Debugging Essentials

Session Number

Richard A. Schummer

President

White Light Computing, Inc.

42759 FlisDr.

Serling Heights, M|l 48314

Voice: 586.254.2530

Fax: 586.254.2539

E-mails: raschummer @whitelightcomputing.com
rick@rickschummer.com

Web sites: www.whitelightcomputing.com
www.rickschummer.com

Overview

Each devel oper has written bugs in code that annoy customers and are difficult to track down. The Visual FoxPro
Debugger is apowerful tool if it is used the correct way and can be frustrating when you don’t. Naturally, the key to
asuccessful debugging session is to take advantage of the power, know some key tips and tricks, and know how to
avoid thetraps. This session will help developers leverage the power of the Visual FoxPro debugger.

This presentation will demonstrate a number of tricks, tips and techniques that Visual FoxPro developers can use
to improve their existing debugging skills.

Attendees will learn...

How to trigger the debugger to open viayour code the smart way.

How to configuring the debugger to fit your needs (options, shortcut menus, colors).

How to leverage the hidden potential of the Trace, Output, Call Stack, Watch, and Locals windows.
How to save and restore debugger settings.

How to step back in time in the Trace window (re-executing code).

How to correct variable and property settings live while code is running.

How to set sophisticated breakpoints, not just ones that stop on a specific line of code.

How to use the ASSERT command to enhance the debugging experience.

How to Track Eventsto understand the reason certain code was executed and how your users make weird
behavior happen.

10. How BindEvents() and COM objects complicate the debugging process.

=

©ON O~ WDN

11. How to determine which variablesin your code are accidentally scoped PRIVATE.
12. How to extend the Coverage Profiler to be even better at finding the slow parts of your application.
13. What's new in Europa.

Skill Level/Prerequisites

Introductory to Advanced. There are no prerequisites for this session.

Table of Contents

Attendeeswill learn...couuu....

Skill Level/Prerequisites

TADIE OF CONLENES......ceeeeeereeee ettt
THE SCIENLITIC MEINOW.... ...ttt 5
MBKE AN ODSEIVALION.vevueseeseesetsee et ees s es s es s bR 5
FOrMUIALE QUESLIONS.......c.cueueeieteirecic ettt bbb s bt e e b et s e R et e s e e s e s s et et et es s snses s anaetesnanans 5
Create HYPOthESIS/PrEUICLION.......c.cciicceccce ettt bt a et et n st s s e tes 5
FIX BN TESE...vceeteeetee ettt s b8R8t 5
EVBIUBEE RESUILScovveeeeeeeeeeeee ettt 6
DIECISION ...ttt eret et ese s b bbb es s8R 8 R84 E £ E 88 6
IS g Lo RV 2 B I= 10 o o 1 o OO 6
LT (o I o U= o oo = OO 7
DEDUGGET BBSICScucucveieieeieiriis ettt assss et es e sttt s et ss et s s s st e e s e A et s e A e bt e e A e A e b s s ae b e e et b s e e A et es s s aet s e sntes 7
How to configuring the debugger to fit your needs (options, shortcut menus, COlOrS)vreevereiereneneeesennnns 7
SNOITCUL KEYS ...ttt et bt a bbbt A A E e E et s e A bt ae At e e A b bt e st et s e st s e b tns 8
[T =To I oo 0 o o TR PTSTTTRT 8
ChangiNg EXPIESSIONS........coceiieiiiieteirise ettt s ss st ss bbbt s s e s et e s st b s e A bt s as s b s e st et s e s et et s s aet s sn s antns 8
How to change values of memory variables and propertiesin the debugger ... 8
How to get quick access to the property values of aspecific ODJECL ... 9
How to set the debugger configuration to factory settings (Example: CLEARDEBUGGERSETTINGS.PRG) 9
How to trigger the debugger to open viayour code the smart way (Example: DEBUGMODE.PRG)........cccevuneeueurerennenns 11
How to leverage the hidden potential of the Trace, Output, Call Stack, Watch, and Localswindows....................... 12
THBCE WINAOW.ottt ettt bbb bR bbb bbb bbbt 12
L@ 011 o 11 YAV T [0 PR 12
CAll SEACK WINOWovcveveeeeeeeeeseeseesee ettt bbb 12
WWBECH WINOOW.ottt 12
L OCEIS WINTOW.......couivieeeineseieeseeseesee st b 12

How to save and restore debugger configuration settings (Example: DEBUGGERCONFIGSAVED.DBG)........ccccvuveueen. 13

How to reorder the contents of the watch window without deleting and re-entering each expression (Example:

DEBUGGERCONFIGSAVED.DBG and DEBUGGERCONFIGVFPSTANDARD.DBG)cceuuueenseisnesnessesssssssssssssssssssssssans 13
How to get rid of “Source iS out Of dale” MESSAGES......ccccreeerererierieiririseeesesssse st sesesss e se st sessssssssssssnssssessssses 14
How to step back intimein the Trace Window (re-eXeCUtinNg COUE).........ccmmmrririninirinsssnesesssese s ssessssssssessssssssesssssnes 14
How to debug a complicated line of code (Example: BREAKUPBAD.PRG and BREAKUPGOOD.PRG)......ccccvueeneerrerennens 14
How to set sophisticated breakpoints, not just ones that stop on aspecific line of code..........coovvievvicrcrrcescveseneen, 15
Breakpoints at [0Cation if EXPreSSION ISTIUE........cvccerireeeeirirerrs ettt e st e st ss s st se s anaesns e nnsee 15
Breakpoint when expression has changed (MUItiple EXPrESSIONS).......cvrueriireeiniressenesesssssesesssssesssssssssssssssssessesssssees 16
Break at |OCALION, PASS Xovveeieeririseeeresietesesesststsssesssssesesssssssse s st ssssssssessssssssessssssssesesssssssssssssssssessssssnsessssssesasssssesssssnsnss 17
How to use the ASSERT command to enhance the debugging EXPEITENCE.........ccverrrerrererersee s ssssesessessesessees 18
How to Track Events to understand the reason certain code was executed and how your users make weird behavior
7= o o R 18
How to track which methods were executed in MY COURY.........cviierriirerres s nae e snsen 19
How Access and Assign Methods can complicate the debugging process (Example: CUSACCESSASS GNEXAMPLE
classin CACCESSASSIGN.VCX, and ACCESSASSIGNDEMO.PRG)c.uuieienisnisnessessssssssssssssssssssssssssssssssessssssssssssssssssssssssssans 20
How BINDEVENTS() complicates the debugQing PrOCESS........ccccerrireinerese s sessssssesessssessesssssessssssssssssssssssssesssssnes 22
How BINDEVENTS() helps the debugging process (Example: CUSMEMBERLOGGER class in CMEMBERLOGGER.VCX,
and BINDEVENTSLOGGINGDEMO.STX) ..ucueuereeireeseeeeseesessessessessssessesssssssssssssssssssessesssssessssssssssssssssessssssssessessesssassasssssassassasssans 22
How COM objects complicate the debUgQiNg PrOCESS........cocevrrreiririrerses s sse e sesssees 23

How to determine which variablesin your code are accidentally scoped PRIVATE (Example:
EVALUNDECLAREDVARS.SCX/SCT, CH18TESTLANGOPT.*)

How to use the Coverage Profiler to debugging COUE ...t sse s snsen
HOW tO Start reCOrding COVEragE |OQSuouururireririrerisieireestes s ssss s ssssssssesse st et sssssssessssssssessssssssesessssssesnssssssesssnsns 26
What are the different columnsin the Coverage log files? (Example: MENUDESIGNERCOVLOG.TXT) ...cccvevveenes 27
How to extend the Coverage Profiler to be even better at finding the slow parts of your application (Example:
CPMODULEPERFORMANCE.SCX, CPMODULEPERFORMANCEREG.PRG)ccuuvtutemmrseesessessesssssssesssssssesssssssesssssssesssssssesenss 28
What' SNEW IN VP Q (EUMOP@).......ccueuieriereeereesseisesssseeisssessessssssssessssessssssssssssssesssssssssssssssssessssssnsessssssssessssssssessssssssesssssssesssssnss 31
WEECH WINTUOW ETTOFSoviriieieieeeeieiees et e e 31
Output Window SCrollS With MOUSEWRNEEL ...ttt a s nses 31
1000 o [T [= 0 TR 31
Cool bugs to debug (EXample: TRICKYBUGS.STX)cuvuiereerrurisseeressssssssssssssssssssssssssssssssessssssssessssssssssssssssesssssssssssssssssesssssnssnss 31
Objectsthat are NOt What theY @PPEEN.........cccvueeeirrircerrese st s e b e ae e s s s s s snsee 4
MOAUIE PEITOMMANCEo.coerererrerer et es s E R b E e A
WHhY IS thiS NAPPENING?.......coe et s et n s e s et s se et e s e s ses s e snses s nnas 35
Variable/Property SCOPING PrODIEIMISccccuriiirieiririsistseses e ssssasesessss s ssss s sssssssesssssessssssssesessssssessssssnsessnsns 35
RESOUITES ...ttt bbb R bbb bbb bbb 35
CONCIUSION o1ttt e e 36

S0 ot N = 10O 36

L7707 o) PO
Author Profile

The Scientific Method

The scientific method is the process by which scientists, collectively and over time, endeavor to construct an
accurate (that is, reliable, consistent and non-arbitrary) representation of the world. This same process can be applied
by a computer scientist as they endeavor to understand the representation of areguirement and how it isincorrectly
constructed in code. The processis broken down into six steps.

Make an Observation
Thefirst step to using the scientific method is to have some basis for conducting your research and debugging. This
isthe step that identifies the problem. The scientific method to debugging and testing software is founded upon
direct observation of the code being run. A developer must look critically and attempt to avoid all sources of biasin
this observation. But more than looking, a developer must measure and quantify the observation; which helpsin
avoiding bias when looking at the problem

So asyou are testing our application (at the sub component, component, or system level) you recognize and
observe a problem or defect. We will use the example of an error “Property <property name> is not found. Unbinding
object <object name>" asaform isinstantiated. Y ou observe acouple of items. Thefirst observation isthe error
message that is displayed. The second is that the object is no longer bound to data.

Formulate Questions

The second step in the scientific method isto formulate a question. Software devel opers have to be curious and ask
questions! Thereisonetruly foolish question - the one you never ask and never get answered! By asking questions
we are elaborating the problem. At this point we should be asking what happened, what was unexpected, and what
did not meet the requirements during the test.

You can ask several questions following our example where the object threw the error message, and did not bind
the object. Which object failed to instantiate and threw the error? | s the object bound to a property or cursor column?
Did the cursor structure change recently? Did you change any properties on the object that failed to instantiate
correctly? Specifically, didyou correctly set or incorrectly change the Control Sour ce property of the object that
failed?

Create Hypothesis/Prediction

The next step of the scientific method isto form ahypothesis, and listing possible solutions. Thisis merely an
educated guess as to the answer for the question. Y ou gather as much book knowledge and practical experience as
you can on the subject to begin to arrive at an answer to your question. This tentative answer, this best educated
guess, isyour hypothesis.

Please notice that hypotheses do not always have to be correct. In fact most of science is spent trying to
determine the validity of ahypothesis, yet this effort isnot likely to give asingle perfect answer. So, in formulating
your hypothesis, you should not worry too much that you have come up with the best or the only possible
hypothesis. The rest of the scientific method will test your hypothesis. What will be important isyour decision at the
end of the method.

One aspect of your hypothesisisimportant; it must be able to be rejected. There must be away to test the
possible answer to try to make it fail. If you design an untestable hypothesis, then science cannot be used to help
you decideif itisright or not.

Following our example we can create a hypothesis that states that the Control Source wasinitially setto a
column that existed at the time, but no longer is part of the cursor structure. If the object was bound to a property we
can state that the Control Source is misspelled or that the property does not exist. We can predict the reason for each
guestion that we stated in the previous step. Y ou will find that as you gain experience in testing and debugging, that
you will recognize patterns and find that your hypotheses become more refined.

Fix and Test

The predictionisaformal way to put a hypothesisto atest. If you have carefully designed your hypothesisto be
sure it can be proven wrong, then you know precisely what to predict. Here you carry out your changes to the code
or data structures and compare the results with the expectations. Y ou need to select one of the hypothesesto test. It

isimportant to construct atest so that it only tests a single hypothesis. Changing more than one constant at atime
can make it difficult to prove that the one change was indeed the correct fix to the problem.

Following our example again, based on our experience devel oping the component, we decide to test the structure
change hypothesis. Why did we pick this? Because we overheard at the water cooler 10 minutes earlier that one of
our teammates was changing views related to thistroubled form. Thisis where our experience and our observations
comeinto play. We want to test the most obvious and practical solutionsfirst. So we look at the Control Source, and
check the view to seeif the column exists. We make the appropriate change (either add the column back in, or remove
the object from the form). We run the form to see if the results are different or the same.

Evaluate Results
How do you evaluate the results? Y ou know what was wrong, and you understand what is expected and correct. As
good developersyou will try to repeat (replicate) the test several timesto avoid the chance of another error
occurring. At this point we need to make sure the testing produces the expected results. The testing must meet the
requirements. Y ou may also test other test cases involved with the object, component, module, etc.

Following our example, you want to make sure that you observe that the error message is not displayed and that
the object isindeed bound to the correct column of datain the cursor. Further tests should also prove that this data
changes, and is saved correctly to proveit isbound properly.

Decision

Now that the test is completed you need to determineif it was asuccess or failure. If it was a success you have
finished the test and the scientific method is once again proven reliable and effective. If the test is not successful we
need to loop back to the hypothesis/prediction and pick anew oneto fix and test. Thisiterative process can go on
for as many questions as you have posed, predicted why, attempted afix, and retested. What happensif you run out
of questions or possibilities? Naturally you need to come up with more, or ask a colleague to assist you in this
process. Watch others use this methodol ogy of testing and debugging to learn from their experience.

In our example we have to decideif the structure change was indeed the problem. If the error messageis till
displaying you have to loop back and check if you correctly changed the Control Sour ce to the proper column, or
once again made atypo, or did not add the column back to the view correctly. If it did work you are in good shape
and can move on to the next test case or round of testing.

Testing vs. Debugging

Testing proves that requirements were met or not met. The next step isto discover why the software was defective.
Debugging can be boiled down to two simple words: problem solving. Some developers are good at it, and some
developers are not so good at it. What is the difference between the two? Experience and approach.

The debugging process is performed during the construction phase, and after defects are found in unit testing,
integration testing, system testing, and user acceptance testing. It is an important part of our jobs as software
developers. Defects are discovered and it is our job to find out why thisis and determine how it can be corrected.

Experience is an advantage because we can recognize patterns of problems we have solved previously. You
learn over timethat if aview is not updating correctly that the SendUpdates property could be set to false, that a data
conflict could be happening during the TABLEUPDATE() ,you did not provide datafor arequired field, you violated a
primary or candidate key with duplication, and so on. Your experience with problemswill also dictate what you think
are the most common causes for repeat problems. Knowing the common causes of these problems will lead us to
solutions faster. Experience will alow you to solve your own problems faster and maybe even more importantly, be
ableto solve problemsintroduced by other devel opers (from our team, or from a previous devel oper on a project you
joined midstream). The more experience you have developing software will also provide numerous opportunities to
solve new problems and see different types of defects, adding to the recognized defect patterns.

There are many approaches to determining the problem and figuring out the solution. The two most common are
the shotgun and the scientific method. The shotgun approach is arandom way if implementing various code fixes
without any rhyme or reason to see if you get lucky and find the solution. Y ou see this approach with less
experienced developers. This approach usually takes more time and if asolution isimplemented, it is hard to
determine what actually resolved the defect, and to learn from the original mistake. The scientific approach givesusa
basis to observe the problem, formulate questions, predict why it is happening, attempt to fix the problem, and verify

itisfixed. Thisapproach is definitely proven to work, requires aformal approach, and produces the additional benefit
of learning from the mistakes made. The additional experience also hones our debugging skills so problems can be
solved faster the next time the pattern is recognized.

The FoxPro 2.6 “debugger”

Y ou might ask the question: why would aV FP developer care about the FoxPro 2.6 debugger (or lack of debugger
when compared to today’ s high power debugging tools)?

There are two reasons; thefirst is to understand the heritage of our favorite development tool. Y ou only have a
Trace Window with the ability to step to the next line of code, step over the next line of code, or execute out of the
existing procedure. Thereis simply nothing more than that. No complexity and limited power. After you have used
the Visual FoxPro debugger it isamost impossible to use the 2.6 debugger effectively.

The second reason we wanted to show the 2.6 debugger isthe fact that it is used to debug applications on a
daily basis. There are thousands of FoxPro DOS and FoxPro Windows applications supported by devel opers around
theworld.

= FPD 26 (Tame v4.5a - 30 day evaluation license)

rogram ©o Out O er tep
set step on

if file("junk.dbf"™)
suspend
else
= Nothing to do
endif

(c) 1989-

Registered To: cancel
Richard A. Schummer

Product ID 26695-082-01

Figure 1. The FoxPro 2.6 for DOS Debugger consists of a Trace Window and a Debug Window.

Debugger Basics

There are afew general tips and tricks when working inside the Visual FoxPro debugger that we find saving ustime
when testing our code.

How to configuring the debugger to fit your needs (options, shortcut menus,

colors)
The debugger has an amazing number of debugger configuration items available.

Thefirst place we can look to configure the debugger isin the Visual FoxPro Tools| Options... dialog. This
dialog allows you to determineif debugger runsin the Debugger Frame or FoxPro Frame, select fonts and colors for
each debugger window, determine which debugger windows are open and where they are located, show the current
linein the trace window, and determineif the program call stack indicator is displayed.

| Wiew || General || Data || Femote Data || File Lozations || Fors || Projects|| Controls

Reaional ‘ Editor || Field Mapping IDE Reports
Erwionment. | FosPra Frame | [] Diizplay Timer Ewents

Specify Window

(® Call Stack © Dutput C Watch

() Locals () Trace

[] Shiow calf stack arder

Eant... | M5 3ans Serlt 8N Shiow current line indicatar

Colors o
hiea Shiow call stack indicatar
| Marrmnal test b Sample
Foreground: Background: aBhCo T2
'|.-’-'n.ulc:matic: | hall '|.-’-'n.ulc:matiu: | b
I] 4] I Cancel I | Help ‘ [-Set Az Default ‘

Figure 2. The VFP Options dialog has numerous debugger options.

Shortcut keys
Check out the “Debugger Keyboard Shortcuts and Menus’ help topic in the Visual FoxPro help file for all the
shortcut keysintegrated into the debugger.

Drag and Drop
There isanumber of drag and drop opportunities we find oursel ves using that we have not seen documented.

Y ou can highlight code in the Trace window and drag it to the Watch window. Y ou can also do the same for
variablesin the Locals window. The expressions can either be dropped in the textbox or in the evaluated list. If you
dropitinthelistitisautomatically added to thelist. If you drop it in the textbox you need to press the enter key to
add it to thelist. Naturally you will want to drop expressions that can be evaluated by the Watch window.

Y ou can drag and drop expressions from the Watch window list to the Watch window textbox. This can useful
when you want to add another expression for adifferent property on the same object or want to add additional levels
of containership to the expression.

The contents of the Trace, Watch, Local's, and Debug Output windows can be dragged to the Command
Window. This can be handy when testing interactively and you want to jump into the Command Window to do
further evaluations of the running code.

Changing Expressions

If you have a syntax error or atypo error in the Watch window you can click twice to edit the expression directly in
the window. This can be hel pful when you entered in along containership hierarchy and need to correct it quickly,
without the need to enter in another entry in the Watch window.

How to change values of memory variables and properties in the debugger

Have you ever been debugging some code to find out that avalue of amemory variable is not as expected and

wished to see how therest of the code would work if the value was corrected at that point? Y ou can literally change

the value of amemory variable as you are stepping through the code in the debugger without the Command Window.
This can be done in the Locals window or the Watch window. Select the memory variable in the Locals window

by clicking the mouse on the entry. Click a second time in the Vaue column which activates the edit mode for the

value. Enter in the value you want the memory variable to be and move off the entry viathe tab key, enter key, or via
amouse click on another item in the debugger.

Now stepping through the code will use the new value and you will be able to evaluate how well the codeis
working when expected values are used.

How to get quick access to the property values of a specific object

We know thisisan old tip from as far back as 1995, but we have had afew new developers cross our paths since then
and see some value in repeating the tip once more. The SyS(1270) function gets an object reference to the object
directly beneath the mouse pointer. We set up a couple of hotkeysto get the object reference:

ON KEY LABEL F8 ox = SYS(1270)
ON KEY LABEL F7 RELEASE ox

Now you have areferenceto look at in the Locals window, DEBUGOUT, display inawal T W NDOW or even print
to the Visual FoxPro desktop. In the debugger you can drill down to look at specific public properties. From the
Command Window you can display the property settings aswell as call the object’ s public methods. Make sure to
rel ease the object, otherwise the object will not be able to be destroyed.

How to set the debugger configuration to factory settings

(Example: CLEARDEBUGGERSETTINGS.PRG)
There are many settings and customization capabilities for the debugger inVisual FoxPro for developersto adjust.
Every once and awhile you might want to just get back to the basics. This can be accomplished with one command:

CLEAR DEBUG

This command clears all breakpoints, restores the Debugger windows (Trace, Locals, Call Stack, Watch and
Output) to their default positions, clears the expressions in the Watch window, and clears the Output Window. This
works in the debugger frame or the FoxPro frame.

Thereis one reason why you might want to get back to the factory settings. Occasionally we run into C5 errors
when using the debugger. Many of the causes have been tracked down and fixed over the years by the Fox Team,
but others still linger. A common resolution isto turn off the FoxPro resource file and seeif it clears the C5 problem. If
the error goes away it is concluded to be a problem with one or more of the debugger preferences or settings stored
in the FoxUser table. One solution typically presented isto delete the FoxUser files and start clean. Thisisabit
drastic since there are specific records in the FoxUser file that can be removed that provides the same effect. Hereis
the code that can be run to fix the problem.

LOCAL | cO dResource
| cO dResource = SYS(2005)

SET RESOURCE OFF
USE (I cO dResource) EXCLUSI VE ALI AS cur Resource

DELETE ALL FOR id = "BPO NTS"
DELETE ALL FOR id = " DBGFRAMEM'
DELETE ALL FOR id = " DEBUGFRAME"
DELETE ALL FOR id = " DEBUGGER"
DELETE ALL FOR id = "ETRACK"
DELETE ALL FOR id = "F_DBGW NDOW
DELETE ALL FOR id = "WATCHEXPR'

PACK
USE | N (SELECT(“cur Resource”))

SET RESOURCE ON
SET RESOURCE TO (| cO dResource)

4 Visual FoxPro Debugger [break] - ch18testlangopt.prg
Fie Edit Debug Tools Window Help

(& ru BTG EIEGRE @ i 54

Trace

=1k

Obect; [

_;_J Frocedure: ! __J

&

REPORT FORM Ch18TestLangOpt.frx NOCONSCﬂ
LABEL FORM Ch18TestLangOpt.Ibx NOCONSOL

_«i__JDo Ch18TestLanaOpt._mpr L'_-J

SETCPELETED)
THSCORMm
EVALVATECTNRS CTASKLSTALIAS + " (EXPRESSiON CQULD T 6E EVALUATED)

(bedeCT)
oW
(EXPRESSi0N COULD MOT 4 EVALUNIED)

Locals for;] chiBtestiangapt. prg

Name | Type
gorasvfpbar L -l
~gorasdbcbar L -

gcwhoami "schum02" e =

You will find that the color and font settings are not reset after deleting records in the resource file. The reason
for thisisthat the settings are saved in the Windows' registry under the following key:

Figure 3. The debugger can be configured to select fonts and colors (foreground and background).

HKEY_CURRENT_USER)\ Sof t war e\ M cr osof t\ Vi sual FoxPro\ 7. O\ Opti ons
HKEY_CURRENT_USER\ Sof t war e\ M cr osof t\ Vi sual FoxPr o\ 8. 0\ Opti ons
HKEY_CURRENT_USER\ Sof t war e\ M cr osof t\ Vi sual FoxPr o\ 9. 0\ Opti ons

Table 18.4 Registry values to store the debugger window colors.

CallstackChangedColor TraceBreakpointColor
CallstackFontName TraceCallstackColor
CallstackFontSize TraceChangedColor
CallstackFontStyle TraceExecutingColor
CallstackNormalColor TraceFontName
CallstackSelectedColor TraceFontSize
LocalsFontName TraceFontStyle
LocalsFontSize TraceNormalColor
LocalsFontStyle TraceSelectedColor
LocalsNormalColor WatchChangedColor
LocalsSelectedColor WatchFontName
OutputFontName WatchFontSize
OutputFontSize WatchFontStyle
OutputFontStyle WatchNormalColor
OutputNormalColor WatchSelectedColor

OutputSelectedColor

The color settings are not exactly straight-forward since they are comma-delimited lists of non-standard RGB()
sequences (first three are the foreground color and last three are the background color), followed by the
determination of the foreground and background colors and whether they are automatic or not automatic (specified
by the RGB selection). The font attributes (name, size, style) can be easily handled programmatically viaaregistry
classlike the one shipped with Visual FoxPro as part of the Fox Foundation Classes. The font styleis set to zero for
normal, one for bold, two for italic, and three for bold and italic.

How to trigger the debugger to open via your code the smart

way
(Example: DEBUGMODE.PRG)

Most devel opers wanting to trigger a debugger session in code use SET STEP ON, ASSERT, or DEBUG. Y 0uU can
SUSPEND and manually open the debugger to start the process. Microsoft removed SET STEP ON fromthelist of
“Feature not available” commands, but not SUSPEND. If you accidentally leave the one of the offending commands
you will introduce new errors into the runtime version of your solution. Before Visual FoxPro 7 this code would
trigger a“ Feature not available” error during runtime. Thereis a better way to trigger the debugger. We borrowed this
ideafrom F1 Technologies and their fine framework called Visual FoxExpress. The program is called DebugMode.
Hereismy modified version:

LPARAMETERS t | Mode, tcMessage

LOCAL | nProgram
| cMessage

I'F NOT FILE("DEBUG. TXT") OR VERSION(2) = 0
RETURN
ENDI F

I F PCOUNT() = 0 OR tl Mode
| nProgram = PROGRAM - 1)
| cMessage = PROGRAM | nProgram 1) + CHR(13) + CHR(13) + "Enter Debug Mode?"
I F PCOUNT() = 2

| cMessage = | cMessage + CHR(13) + tcMessage
ENDI F

* Check to see of already in a debuggi ng session
I F NOT (WAEXI ST("WATCH') OR WEXI ST(" TRACE")
OR WVEXI ST(" CALL STACK") OR WEXI ST("LOCALS")
OR WVEXI ST(" DEBUG OUTPUT"))

* See if devel oper wants to enter debugging session
| F MESSAGEBOX(| cMessage , MB_YESNO + MB_| CONQUESTI ON, _SCREEN. Capti on) = | DYES
DEBUG
SUSPEND
ENDI F
ENDI F
ELSE
CLOSE DEBUGGER
ENDI F

RETURN
*. EOF . *

The program looks for afile called DEBUG.TXT. If thefile does not exist the debugger modeis not triggered. The
same goes for VFP runtime mode, the debugger is not opened as it would trigger a“ Feature not available” error. The
debugger is not opened if any of the five debugger windows are open. If all the conditions are met the developer is
presented with a message (see Figure 4).

Why isthis better? First it isoptional. If you haveaSET STEP ONinthe codeit will execute every time unless
you bracket the code with a conditional statement. Much simpler to add a safer call with DebugMode(). Y ou can then
optionally ignore each call depending on the location of the code you want to debug.

Microsoft Visual FoxPro v9.0 - Debugging Essentials ¥

9 Called from FRMBUGGYFORM.LOAD
-
II"-'.

Enter Debug Mode?

i Yes | | Mo

Figure 4. DebugMode() presents developer with message asking if you want to optionally enter debug
mode.

How to leverage the hidden potential of the Trace, Output, Call
Stack, Watch, and Locals windows

Trace Window

The Trace Window shows the code that is executing. Y ou can search the code using the Find dialog included on the
Edit menu and it worksjust like it does with any of the VFP editors. One differenceis the “Not found” message is not
displayed in the status bar like it iswith any editor.

Output Window

The Output Window is used to display debugging messages when you run code you are debugging. This window of
text can be filled using the DEBUGOUT command. The DEBUGOUT command can have mixed data types in the
message:

DEBUGOUT “"We made it to the point where the customer data is saved", DATETI ME()

DEBUGOUT SECONDS(), "Started the process"”

DEBUGOUT SECONDS(), " Ended the process"

The output window can be searched with the Find dialog. Y ou can clear the contents by selecting the Clear item
on the shortcut menu.

Call Stack Window

The call stack shows the program calling order with the current program on top. Y ou can configure/show the Ordinal
Position which isthe call stack count, the current program indicator and the call stack indicator (where you are
pointing in the stack to review the calling code).

Watch Window

The Watch Window is apowerful and dangerous feature of the debugger. Y ou can put inillegal expressionsin the
Watch Window, like GETFONT() or GETFI LE() which initiate interactive dialogs. We worked with other developers
who did thisand it cause C5 errors every time the debugger was opened. We ended up having to blow away the
FoxUser resourcefileto fix this.

Locals Window

The Locals Window shows all the memory variablesin scope (with values and type) for the selected module. The
shortcut menu allows you to select which type of memory variable is displayed: public, local, standard, and object.
Y ou can change the value of any literal inthelist including array values and properties on an object.

How to save and restore debugger configuration settings
(Example: DEBUGGERCONFIG SAVED.DBG)

A Visual FoxPro developer can go through alot of work configuring the debugger with the settings for the watch
window, developing the exact breakpoints needed for an application or module, and selecting certain eventsto be
tracked. The settings can change depending on the application or a specific module in an application. We can delete
expressions from the watch window and enter in new ones as we test various modules, we can toggle breakpointsin
use and not in use, and we can move events that are tracked on and off the list. Another way isto save the exact
configuration for the module and later load the configuration without the need to reenter the expressions or toggle
the breakpoints.

Thisisaccomplished viathe Debug frame only. Using the menu, you can select the File | Save Configuration...
to create afile. Thefile save dialog will default to the current Visual FoxPro directory. To restore a previous
configuration you use the File | Load Configuration... menu option. The file contents are stored in an ASCI| text file.
Hereisan example:

DBGCFGVERSI ON=4
WATCH=_scr een
WATCH=set (" del et ed")
WATCH=set (" pat h")
WATCH=t hi sf orm
WATCH=curdir ()
WATCH=r ecno()
WATCH=eof ()

WATCH=_vf p. Acti veProj ect
BPMESSAGE=0OFF
BREAKPOI NT BEG N
TYPE=2

CLASS=

LI NE=O

EXPR=EOF(" cur Report")
DI SABLED=0

EXACT=0

BREAKPOI NT END

BREAKPOI NT BEGI N
TYPE=3

CLASS=

LI NE=0

EXPR=" MAI N" $PROGRAM)
DI SABLED=1

EXACT=0

BREAKPOI NT END

EVENTW NDOW=-ON
EVENTFI LE=

EVENTLI ST BEGH N
Activate, Deactivate
EVENTLI ST END

Y ou can mani pulate the contents safely and rel oad the configuration. Make backups of thisfileif you are worried
of breaking the layout.

How to reorder the contents of the watch window without deleting
and re-entering each expression
(Example: DEBUGGERCONFIG SAVED.DBG and DEBUGGERCONFIGVFPSTANDARD.DBG)

There might be atime when you have numerous watch expressionsin the watch window and feel the need to reorder
them to amore logical grouping. Y ou could delete and re-enter each expression in the order you prefer, or you can
use the following trick to save you awhole bunch of time.

First save the debugger configuration once you have all the expressions in the watch window that you prefer.
Note that you will need to be using the Debugger frame to accomplish this (see previous section on “How can | save
and restore the configuration of the debugger?”’

Open up the debugger configuration file withamobl Fy FI LE command. Thisfileis nothing morethan atext file.
Each of the watch expressions start with WATCH=, followed by the expression that is evaluated. Y ou can sort the
watch itemsin thisfile and save it. Load the configuration and the watch window will have the expressionsin anew
order.

Strangely enough, we decided to try to break thisfile by sticking WATCH= expressions throughout the file. The
expressions showed up in the watch window no matter where we stuck them in the file. We do not support you doing
this, just noting the observation.

How to get rid of “Source is out of date” messages

Thetrick to getting rid of the “ Sourceis out of date” messages isto recompile the source code that istriggering the
message with the project’s Debug Info turned on. What probably has happened is that the code was last compiled
with Debug Info turned off. Note that Visual FoxPro code does not get recompiled unless there is a change since the
module was last recompiled, you manually recompile the code with the covPI LE command, or you recompile al files
in aproject by setting the Recompile All Files option on the build dialog.

How to step back in time in the Trace window (re-executing
code)

Visual FoxPro developers have the same luxury as someone watching a sporting event on television, instant replay. If
you have ever stepped through code and did not see the problem or accidentally click on the Step Out when you
meant to click on the Step In, you can step back in time using the Set Next Statement available in the Trace Window
shortcut menu. If you are running in the Debug Frame you can use the Debug | Set Next Statement menu item.

One of the big situations we rerun certain code is to see how the code runs with different values for a memory
variable or aproperty. Check out how it runs with different conditions triggered. Thisis also an excellent way to
trigger code that is never expected to run under normal data conditions.

How to debug a complicated line of code

(Example: BREAKUPBAD.PRG and BREAKUPGOOD.PRG)

We have all written long complicated lines of code to enforce the business rules to meet the requirements stated by
our customers. The difference between writing one line of complicated code and numerous line of code can be the
difference between long, complicated debugging sessions, or a quicker solution.

The key to debugging complicated codeisto break up the code into multiple lines. In the case of an I F statement
where we have more than one logical condition, it might be tough to determine which conditions determine if the
THEN side of the logic or why the EL SE is executed.

Listing 1. Example of IF logic that is difficult to debug.

* Bazillion Conditions
I F | oHockey. Ti cket sAvail able() = .T. AND || GroupPurchase = .F. AND ;
Det er mi neTrophy(l cSport) = "Stanl ey Cup" AND | oHockey. cHomeTeam = "Red W ngs" AND ;
| oHockey. cVisitingTeam = "Flyers" AND (|| DrewSpeedi elnDetroit = .T. OR ;
Il Toni Fel tmanl nDetroit = . T. OR I M keFel tmanlnDetroit = .T.)
| oHockey. | PurchaseMul ti pl eTi ckets = . T.
ELSE
| oHockey. | PurchaseMul tipl eTickets = . F.
ENDI F

The problem with this codeis that you cannot easily determine which of the conditions would cause me to
purchase one ticket or multiple tickets. In the trace window all you would know is that the conditions evaluated to
true or false, not which condition made me get tickets for all my hockey friends. This code might be better for
debugging:

Listing 2. Example of IF logic easier to debug.
* Not "best practice" code, but easier to debug
I F | oHockey. Ti cket sAvail able() = . T. AND || GroupPurchase = . F.
| F Determ neTrophy(lcSport) = "Stanley Cup"
IF | oHockey. cHomeTeam = "Red W ngs" AND | oHockey.cVisitingTeam = "Flyers"
| F DrewSpeedi el nDetroit = .T. OR ;
'l Toni Fel tmanl nDetroit = .T. OR ;
Il M keFel tmanl nDetroit = . T.
| oHockey. | PurchaseMil tipl eTi ckets
ELSE
| oHockey. | PurchaseMul ti pl eTi ckets
ENDI F
ELSE
| oHockey. | PurchaseMul tipl eTickets = . F.
ENDI F
ELSE
| oHockey. | PurchaseMul tipl eTickets = . F.
ENDI F
ELSE
| oHockey. | PurchaseMil tipl eTickets = . F.
ENDI F

1
—

I
n

Aswe are stepping through the code we stop at each individual |F statement. This granular control will give you
information to make better informed changes to the code to make it work. Sometimes breaking up code is hard to do,
and sometimesit produces code that violates “best practice” rules (such astoo many indented | F conditions, but in
the case where this happens you can put the code back with the correct logic after debugging the problem.

The sample code also demonstrates alarge SQL Select statement. It isthree queries UNION'’ ed together. The
common problem is that the structures are not exact matches or one of the queriesis not producing the expected
results. The best way to debug thisisthe break out the individual queries, then merge them together with the UNION
in aseparate step. Evaluate the results of the individual queries and check out the structure of the different queries.
You can also merge the two queries at atime to see which query is causing the non-matching structure errors.

SELECT * FROM cQut| ookl UNI ON ;
SELECT * FROM cur Qutl ook2 UNI ON ;
SELECT * FROM cur Qut | ook3

ORDER BY 6, 7 ;

I NTO CURSOR cur Qut | ook4

How to set sophisticated breakpoints, not just ones that stop
on a specific line of code

Breakpoints are pretty straightforward if you need to stop on a specific line of code. In this case you can use the
Trace window and double-click on the left margin, or right-click on the left margin of an editor and selecting Toggle
Breakpoint, or double-click on the editor margin. When the code is being debugged the breakpoint will stop the
execution. | will hazard a guess that thisis 70% of the breakpoint usagein Visual FoxPro. Another 20% of the
breakpoints stop code when avalue or expression has changed. This can be set in the Watch window by double-
clicking in the left margin. Both of these breakpoint types can be set up in the Breakpoint dialog, but rarely are
because the interactive techniques are faster.

What about the other ten percent? These are breakpoints you typically have to set up in the Breakpoint dialog
and are usually the more powerful breakpoints. With knowledge comes power. So the intent of this section isto
highlight afew of the breakpointsthat fall into the other ten percent.

Breakpoints at location if expression is true

Earlier | noted that setting a breakpoint to stop at alocation is as simple as clicking on the trace window or editor
window margins. How about conditionally stopping at alocation? Sure, set up abreakpoint using the option “Break

at location if expression istrue” from the Type combo box. Thiswill open up the Expression textbox. Y ou need to
typein an expression resulting in alogical true or false (see Figureb).

& Breakpoints A 3]
Tipe:
= oK
BEreak: at location i expression is ue | :I
Locatior: Carcel
| 17
Eile:

| .:\presentations\essentialfox2UU4\debugginges'sentials D Help
Faszcount: Expression:

[:_Ic:_usemame="rv1ountaineel" | B
Breakponts:

:- a7 .{.bugg_l,lprogram.prj-}.”" & Add
|8 7 fi T \ = = b=

: 3 qulElnlu]’ &N POg) WIRER AT i
[i "Bop S Bemove

[] when "lcusemame! changes

at " 27 {buggupragraropra} pass 3 | Dizable

[] when "lcusemame.AND. This.datasession=1" changes

wihien lcusername. SND. This.name="frmBuggyForm™' Clear Al
when "ISNULL[buggyform]” changes

| [#] &t & {buggyprogram. prg}” bl

Dizplap breakpoint messages

Figure 5. Setting breakpoints to break at a specific location when an expression is true is set up in the
Breakpoint dialog.

It isimportant to note that Breakpoints by location are broken if any codeis added or removed in the program or

method which resultsin more or less lines above the location specified in the Breakpoint, just like code based
Bookmarks.

Breakpoint when expression has changed (multiple expressions)

Earlier | noted that you can set up a breakpoint when an expression changes. This breakpoint is set up in the Watch
window with avalue of a property or memory variable being the expression. Y ou can a so evaluate logical
expressions
- Comparisons of value (IcUserName == “Mountaineer”)
Evaluating environment settings (“reports’ $ lower(set(‘ path’)))
Determining program stack information (“ProgrammaticChange” $ program())
Datasession changes (this.datasession = 1)

& Breakpoints 3]
Type:
e (] 4
Break when exprassion haz changed | :I
Location: Cancel
Eile:
| Help

Eéss count: Expression:
[| lzuzemname AMD. T hiz.datazession=1 | B
Breakpoimnts:

[et 17 .{.bugg_l,lprogram.prj-}' A = m

at " 17 Sbugguprogram pra} when cusermane=="M:

when leusername=="Boy Scout™" iz true Bemove

[] when "lcusemame! changes

at " 27 {buggupragraropra} pass 3
| W when "lousemame AND. T his. dat " changes
LClear &l

[when "lcuzermname AMD. Thiz.name="frmBuggyForm'™'

when "ISNULL[buggyform]” changes
| [#] &t & {buggyprogram. prg}” b

Dizplap breakpoint messages

Figure 6. Setting break points with multiple expressions can be set in the breakpoint dialog or the Watch
window.

While reviewing one expression at atime is beneficial, you may find that the code stops too often. It might be
two conditions that really trip the need to stop the code and evaluate what is going on. Do not be afraid to evaluate
as many conditions as necessary to stop the code when it is most efficient to debug in a suspended state.

Break at location, pass X

Have you ever found yourself determining that the code is broken after twenty loops through a FOR...ENDFOR
loop? Y ou step through the loop and fix the code, step through the loop twenty more times, find something new, and
repeat. Thethird or forth time through the process you get smart and set a breakpoint on alocation inside the loop
and press the Resume button 19 time, then step into the code causing the problem. What if you could just set a
breakpoint to stop after processing the loop 20 times? No problem.

Visual FoxPro has this Pass Count textbox which you indicate the iterations you want processed before the
breakpoint takes notice and stops the code. Thisworks great in loops, but can also be used in calls to procedures or
methods. Visual FoxProisgreat at keeping track of theiterations. If you resume the code after the pass count has
been met, and the breakpoint location is hit again, the breakpoint will stop the code from executing again. The Pass
Count isaminimal threshold.

Type:
e (] 4
Break at location | :I
Location: Cancel
27

Im

ile:

_d:\presentations\essentialfox2UU4\debugginges'sentials D Help
Faszcount: Expression:

3

Breakpoints:

| [#] " 17 {bugguprogram. prg}” | Add
at"" 17 fbuggyprogram:pra}’ when Vlcusemame=="Mc | =
when leusername=="Boy Scout™" iz true Remove
[] when "lcusemame" changes

It & at" 27 {bungyprogram pral pass 3
[] when "lcusemame.AND. This.datasession=1" changes
wihien lcusername. SND. This.name="frmBuggyForm™' Clear Al
when "ISNULL[buggyform]” changes

| [#] &t & {buggyprogram. prg}” el

Dizplap breakpoint messages

Figure 7. Setting breakpoints that stop at a location after a certain number of executions can only be set
up in the Breakpoint dialog.

How to use the ASSERT command to enhance the debugging
experience

The ASSERT command is a great way to trigger debugging sessions when you have unexpected conditions. The
ASSERT command isaMESSAGEBOX() triggered conditionally. The condition is the desired result. When the
condition isfalse the message is displayed. A key point with the ASSERT isthe fact it only worksin the Interactive
Development Environment, not runtime. So this command is specifically for debugging.

If you want ASSERT dialog (Figure 8) to display you need SET ASSERT ON, SET ASSERT OFF turnsthem off.
The dialog displays with four options, Debug, Cancel, Ignore, Ignore All. Selecting Debug starts the debugger so
you can check out why the condition failed. Cancel will CANCEL the program, allowing you to go to the source code
and fix the condition if you know what went wrong. Ignore will ignore the assertion this one time. Ignore All will
perform aSET ASSERT OFF so this assertion and all other assertions are not displayed.

¥ Microsoft Visual FoxPro - Debugging Essentials \ x)

:!JJ Developer did not pazz corect object parameter

[Canicel J I lgnare | [Ignure&ll]

Figure 8. ASSERT provides you with several options including opening the debugger.

How to Track Events to understand the reason certain code
was executed and how your users make weird behavior
happen

The current Visual FoxPro debugger always had Event Tracking available. This can be set viathe Event Tracking
dialog in the Visual FoxPro Debugger. Event Tracking can also be turned on with SET EVENTTRACKI NG ON and off
using SET EVENTTRACKI NG OFF.

Thereisanew command in Visual FoxPro 7, SYs(2801) . This new command lets you decide if you want to only
track Visual FoxPro events, Windows mouse and keyboard events, or both. SYS(2801, 1) providesthe event
tracking that we were use to in previous versions of Visual FoxPro. It provides output like this:

56. 052, frmeval uateundecl arednenvars. Acti vate()

56. 122, frneval uat eundecl aredmenvars. MouseMove(1l, 0, 587, 152)

58. 135, frneval uat eundecl aredmenvars.txtreportfil ename. MouseMove(0, 0, 346, 58)
58. 165, frneval uat eundecl aredmenvars.txtreportfil ename. MouseMove(0, 0, 290, 40)
58. 185, frmeval uateundecl aredmenvars. MouseMove(0, 0, 280, 37)

58. 215, frneval uat eundecl aredmenvars.txtfil ename. MouseMove(0, 0, 248, 26)

58. 220, frneval uateundecl aredmenvars.txtfil ename. KeyPress(113, 0)

58. 230, frneval uateundecl aredmenvars.txtfil ename. KeyPress(101, 0)

58. 225, frneval uateundecl aredmenvars. txtfil enane. MouseMove(0, 0, 228, 21)

58. 245, frneval uat eundecl aredmenvars.txtfil ename. MouseMove(0, 0, 219, 18)

58. 265, frneval uat eundecl aredmenvar s. MouseMove(0, 0, 195, 8)

59. 417, frneval uat eundecl aredmenvars. Deacti vate()

If we use the enhanced event tracking provided by sys(2801, 2) wewill see only the Windows mouse and
keyboard events. Be prepared for an enormous amount of feedback.

84.778, MouselMove 00000200 (938, 209) 00000000 Visual FoxPro Debugger
84.798, MuseMove 00000200 940, 203) 00000000 Visual FoxPro Debugger

84.858, MouseMve 00000200 590, 0) 00000000 WLC Undecl ared Vari abl e Anal yzer
84.888, MuseMove 000000A0 985, 233) 00000014 WLC Undecl ared Vari abl e Anal yzer
85.299, MouseMove 00000200 576, 2) 00000000 WLC Undecl ared Vari abl e Analyzer

—~~—~ e~

85. 760, Mouselp 00000202 590, 22) 00000000 WLC Undecl ared Vari abl e
Anal yzerfrmeval uat eundecl aredmemvars. t xt ver si on. MouseUp

87.392, KeyPress 00000100 1, 32) 68 0

87.532, KeyPress 00000100 1, 31) 83 0

88. 724, MouseMove 00000200 5, 157) 00000000 Command

88. 784, MouseMove 00000200 10, 257) 00000000

88. 784, MouseMove 00000200 1, 297) 00000000

88. 834, MouseMove 000000A0 280, 582) 0000000A Project Manager - Chi8
88. 834, MouseMove 000000A0 280, 591) OO00OOOOOA Project Manager - Chl8
88. 854, MouseMove 00000200 18, 531) 00000000 M crosoft Visual FoxPro

e e e e e e

SYS(2801, 3) combines both the Visual FoxPro events with the Windows mouse and keyboard events. If you
thought you were getting alot of feedback with them individually, imagine if you were getting both sets together.
The new event tracking provides additional information for the mouse and keyboard events as well. The changes
are obvious by evaluating the logs above. It should also be noted that the events tracked are within the Visual
FoxPro frame (the Visual FoxPro IDE) and the Debugger frame. During our testing we found a gotchathat isimportant
to passalong. If you execute SET EVENTLI ST TO before executing SYS(2801) and turn on event tracking in the
debugger’ s Event Tracking dialog you will not get any event tracking in the Debug Output window.

How to track which methods were executed in my code?

The Visual FoxPro debugger has Event Tracking as we discussed in the previous section, but it does not track
method calls natively.

We have had a number of intense discussions with Visual FoxPro devel opers on the subject of eventsvs.
methods. Events are intrinsic to Visual FoxPro and only provided by Microsoft. We cannot create our own events at
thistime. Events can be triggered by the user (activating aform, setting focus to a control, clicking on a
commandbutton), or they can be triggered programmatically (changing the active page on a pageframe triggers the
page activate event, keyboarding atab key will trigger the LostFocusevent of one control and the GotFocus of
another control). There are event methods that are called in response to an event, which are also provided by
Microsoft. We can programmatically call our own custom methods from the native event methods.

So how can you easily track the calls through the methods (both native and custom)? Add the following call to
each method that you want to track:

DEBUGOUT PROGRAM)

OR

DEBUGOUT "Progam " + PROGRAM) + ;
* called by " + PROGRAM PROGRAM -1)-1)

Y ou will need to make sure the Debug Output window is open when you test out the feature in the application.
The reason we prefer the DEBUGOUT command instead of a MESSAGEBOX or aWAl T W NDOWi s that the |ast two create
side effects like triggering Deactivate, Activate, LostFocus, and GotFocusevents. The contentsof the output
window can be reviewed directly or saved to afile. If you are doing some regression testing of acomponent it can be
helpful to save the before and after files and then do a comparison of the two to see if anything has changed. Y ou
can save thefile by right-clicking on the Debug Output window and using the Save As menu option or by using the
command SET DEBUGOUT TO <fil enane>.

How Access and Assign Methods can complicate the

debugging process
(Example: CUSACCESSASSIGNEXAMPLE class in CACCESSASSIGN.VCX, and ACCESSASSIGNDEMO.PRG)

Access and assign methods are very powerful methods that | use on aregular basis. They really do not complicate
the debugging process because you can step in and out of the methods. However, they can throw atwist into the
process when you are debugging another developer’s code (like acommercia framework, or fromateam member) or
you forget that you have one of these methods.

One of the challengesin using acommercia framework isunderstanding how it works, and how to fit your
custom code inside of the normal course of events. In the case of Visual FoxExpress, F1 Technologies has extensive
use of assign and access methods. Mike and Toni have collections of objects and a property you access to get the
count of the items in the collection. Each of these count properties has an access method on the property. The
access method has code that loops through the collect to determine how many items arein the collection. Asyou
step though code you see the property, but the value is zero. The Watch window reports zero, the Locals window
reports zero. Accessing the property in the debugger does not trigger the access method. The only way to get atrue
value of the property set through an access method is to access it and step into the access code or save the value of
the property setting to alocal memvar via code.

* this.nltemCont_Access()

LOCAL | nRet urnVal

I nReturnVal = ALEN(this.altenms, 1)
RETURN | nRet ur nVal

Visual FoxPro Debugger [break]

_EIE E.c.lit Debug Tools Window Help)
(EHE

& »m BTGB

BeamEa

EE®

Trace . _ialx!
DEiect | | F'Ioc:edure: | Locals for: | accessassighdema.prg v |
4 S| Mame Walue
: l1oAA = NEWOBJECT {"cusBAccessissignExample”, "clAccessiissig | & fosa (Object) A
7 1oB%.nStatus = 2 #* aitems EArrayj ;
g 10BA.nStatus = "REDW baseclass Custom
] loBA.altems[2] = UPPER{loAf.altem=[2]) class "Cusaccessassignexample”
10 classlibrary "d:\presentations\essentialfox20C
11 inFavoriteHockeyTeam = loAfG.altems({1] comment o
iz InTeamCount = loAA.nTtemCount controlcount i]
i3 = .
2 - contrals (Caollection)
= 14 RETURN height =
& helpcontextid a
¢ 3 . left 0
name "tusaccessassignexample”
I _{oix
- el
Wwatch | | nstatus 3
Marme [Valus TTope objects (Collection)
parent (none)
-~
ALzl i = parentclass "Custom"
SELECT() 1 N B picture
RECNOY) 0 N tag e
RECCOUNT() 0 N t
e op 0 v
ORDER() £ a8 =

Figure 9. Properties with access methods do not return values to the debugger, so you need to access the
property values in code to see what the value really is.

One of the tricky issues with assign methods that they can change the setting of the original assignment based
specified conditions. For instance, your code could set a property to a character string and the value could be set to

anumeric representation of the string:

* nStatus_Assign() nmethod
LPARAMETERS t uSt at us

I F VARTYPE(tuStatus) = "N
IF INLIST(tuStatus, 0, 1, 2, 3)

* Fine, proceed
ELSE
tuStatus = 0
ENDI F
ELSE
I F VARTYPE(tuStatus) = "C"
DO CASE
CASE LOVER(tuStatus) = "red"
tuStatus = 3
CASE LOVER(tuStatus) = "blue"
tuStatus = 2
CASE LOVER(tuStatus) = "green"
tuStatus = 1
OTHERW SE
* Unknown
tuStatus = 0
ENDCASE
ELSE
tuStatus = 0
ENDI F
ENDI F

this.nStatus = tuStatus

RETURN

In this particular example your code will make the assignment witht hi s. nSt at us = “ Red”, yet the property in
the Watch window will say nSt at us = 3. If you are unaware of the setting transformation in an assign method, you
could find yourself asking the obvious question” “How the heck does this happen?’ Make sureto keep in the back
of your mind that the code could be altered by an assign method and the “event” could be firing without informing
you.

The good news isthat Visual FoxPro allows you to step into assignments and the debugger will step you
through the code so you can see how the transformations happen. Over the years | have personally used Step Over
more than Step into, especially working with framework code to save metime looking at all the various access and
assign code that | normally do not need to look at. It isthe special casesthat burn me.

How BINDEVENTS() complicates the debugging process

BI NDEVENTS() , introduced in Visual FoxPro 8, complicates the debugging process in the same fashion as access
and assign methods. Delegate code can be fired at “unexpected times.” | write unexpected, because you may not be
aware that the property, event, or method could be bound by BI NDEVENTS() . The same solution with regard to
stepping into code applies to BI NDEVENT() code. Y ou can also use AEVENTS() to determineif the object is bound
to BI NDEVENTS() code.

How BINDEVENTS() helps the debugging process

(Example: CUSMEMBERLOGGER class in CMEMBERLOGGER.VCX, and BINDEVENTSLOGGINGDEMO.SCX)

Drew Speedie wrote an article in the June 2004 issue of FoxPro Advisor, “BINDEVENT() Simplifies PEM Logging”,
that pushed me over the hump on how developers can log every method fired, not just the intrinsic event methods
(aswe can do with the Event Tracking in the debugger). All, without the need to write aprogram call in each custom
method and each intrinsic event method. Drew’slogging classis based on Bl NDEVENT() and not only handles
events and methods, but can track changesto custom and intrinsic properties. | took Drew’s example and extended it
to output to the Debug Output window, text file, WAl T W NDOW and the screen as he did.

The concept issimple: create ageneric object that logs information. In this case, the logging iscalled via
Bl NDEVENT() delegated code. | am not going to print the code here, but you can find all the code inthe
cusMemberLogger classin the cMemberL ogger.vex class library. There are two key methods that are bound via
Bl NDEVENTS() , LogPEMBefore and LogPEMAfter. Each of these methods call the GetMember Details method to
determine the information which is output and the Loglt method to output the information. Once the property, event,
or method is bound, the code in the delegate method (LogPEMBefore and LogPEMAfter) executes and logs the
execution (method or event), or the value (property).

The implementation is straightforward: instantiate the cusM emberL ogger classto amemory variable or property,
and bind the PEMs you want logged. There is sample code in the L oad event method of the
BindEventsL oggingDemo form:

I'F TYPE(" _screen. oMenmber Loggi ng") = "U"
_screen. AddProperty("oMenmber Loggi ng", . NULL.)
ENDI F

I'F I SNULL(_screen. oMenber Loggi ng)

_screen. oMenber Loggi ng = NEWOBJECT(" cusMenber Logger", "cMenberLogger.vcx")
ENDI F
I'F TYPE(" _screen. oMenmber Loggi ng") = "O' AND NOT | SNULL(_screen. oMenber Loggi ng)
_screen. oMenber Loggi ng. cLogType = "_screen"

* Bind Methods/Events for |ogging

BI NDEVENT(t hi s, "Activate", _screen.oMenberlLoggi ng, "LogPEMBefore", 1) &&
Intrinsic Method

Bl NDEVENT(t hi s, "Show', _screen.oMenberLoggi ng, "LogPEMAfter", 1) &&
Intrinsic Method

BI NDEVENT(t his, "Click", _screen.oMenberLogging, "LogPEMAfter", 1) && Event

Bl NDEVENT(t hi s, "CustomVethod", _screen.oMenberlLogging, "LogPEMAfter", 1) && Custom
Met hod

* Bind Properties for |ogging

BI NDEVENT(t hi s, "BufferMde", _screen.oMenberlLogging, "LogPEMBefore", 0)

BI NDEVENT(t hi s, "BufferMde", _screen.oMenberlLogging, "LogPEMAfter", 1)

BI NDEVENT(t hi s, "cCustonProperty", _screen.oMenberlLogging, "LogPEMAfter", 1)
ENDI F

Any time an event istriggered, acustom or intrinsic method is called, or a property isassigned, alog entry is
made. | hope the impact of this capability for debugging is apparent. If you ever run into a situation where you do not
understand how or when a property was changed or the sequence of events and methods that took place, thisisthe
technique for you. It does not provide you key information like the call stack (becauseit isnot available to the
delegate code), but if you log the key PEMsit can lead you to solving your anamoly.

The drawbacks might not be obvious. BI NDEVENTS() cannot be hooked to properties, events or methods that
are not public in scope (hidden and protected). The VFP Help file explicitly explains that you do not want to interact
BI NDEVENTS() to assigh methods, asthey are scoped protected. This should not be a problem since you can bind
the property to the logger object.

Other reasonsto read Drew’ s article is that he demonstrates and provides code to generically bind all the
properties, events, and methods of an object so you can track it all. He also discusses the disadvantages.

How COM objects complicate the debugging process

Theissue with Visual FoxPro COM objects accessed outside of Visual FoxPro isthat the debugger is not available.
The codeis running in the context of the calling application. They way | have debugged COM object is using
STRTOFI LE() to dump out messages | typically display in the Debug Output window. | can then open the text fileto
evaluate what code was run, what property and memory variable settings were made. Y ou can also dump out LI ST
MEMORY and the calling stack using ASTACKI NFO() along

Naturally you can test the COM object inside of Visual FoxPro using the Command Window or a program. Using
thistechniqueisagreat way to find the initial anomalies. The problem iswhen interaction with the other applications
gives different results than what you get using VFP to test it out. This happens because you miss a condition,
improperly code for parameters passed by the calling application, or there is some incompatibility or bug in the calling
application.

How to determine which variables in your code are
accidentally scoped PRIVATE

(Example: EVALUNDECLAREDVARS.SCX/SCT, CH18TESTLANGOPT.*)

Visual FoxPro 7 introduced a new feature in the debugger that hel ps track which variables are not declared in our
code. Thisisaccomplished by setting the application object’s new property called LanguageOptionsto one. This
setting, combined with the execution of your program code will dump a comma-delimited string of information about
undeclared variables to the debugger’ s output window.

Why istracking undeclared variables so important to a developer if Visual FoxPro does not require the
declaration to run? Visual FoxPro will automatically determine that a new variable isreferenced, add it to the list of
variablesthe code is using, and scopeit private. Technically it is not important unless the scope of privateisa
problem in your code. The example we like to use is when amethod executes and automatically declares avariable
with private scope and calls another method that also has the same variable undeclared (already private in scope).
The called method changes the value and returns to the previous method. This side effect could be completely
unexpected and lead to along debugging session because of the confusion.

This new capability worksfor al code, whether in programs, class methods, form methods, report and |abel
methods (like the dataenvironment), menus, or stored procedures. If it has code, it can be tested. This new capability
does have a catch. Visual FoxPro can only determine undeclared variablesin code it executes. If the code is bracketed
by a condition and this condition does not exist during testing, it will not be checked.

Download!

We have included a number of sample files named CH18TestLangOpt.* to test the LanguageOption
feature. Start the testing by executing CH18TestLangOpt.prg. You will be prompted to enter in a text file
name. If you elect not to pick a file the Debug Output window will be opened.

So, to start the logging process we need to execute the following code in a program or from the Command
Window:

_vfp.LanguageOptions = 1

The Debug Output window does not have to be activated to accept the undeclared variable information if you
SET DEBUGOUT TO <fi | ename>. If the output is not being directed to afile we suggest activating the Debug
Output window so the information can be captured.

| cDebugQut SavedFi |l e = GETFILE(" TXT", "DebugQut")

I F EMPTY(I cDebugQut SavedFi |l e)

ACTI VATE W NDOW " Debug Qut put "
ELSE

SET DEBUGOUT TO (| cDebugQut SavedFi |l e)
ENDI F

LangOptionsEn,03/03/2002 11:08:08 PM 11.CHTIBTESTLANGOPT D \DATA\W\NWDHD\MEGAFDK\CHAF‘TEHTS\CHTSTESTLANGDF'T FXP LCTEMF‘PATH

LangOptionsEn 03/03/2002 11:08:08 P 12 CHTETES TLANGOPT DADATAWINWIORDSMEGAFOR\CHAPTERTBACHTETES TLANGDFT- FXP LLRESULT

LangOptionsEn,03/03/2002 11:08:08 PM 4 CUSBUSINESS.INIT PROCEDURE CUSBUSINESS.INIT D:ADATAWANWORDAMEGAFDXACHAPTERTAAMCHTSTES TLANGOPT VCT LACURSOR
LangOptionsEn,03/03/200211:08:.08 PM.6 CUSELISINESS.INIT PROCEDURE CUSBUSINESS.INIT DADATaWINWORDAMEGAFDXACHAPTERTSVCHTBTES TLANGOPT VCT.LLRETURMN
LangDptionsEn,03/03/2002 11:08:08 PM B CUSEBLSINESS INIT,PROCEDURE CUSBUSINESS.INIT DADATANWANWORDAMEGAFOXACHAPTERTAAMCHISTES TLANGOPT VCT LCMYCURSOR
LangOptionsEn 03/03/200211:08:08 P9 CUSBUSINESS.INIT PROCEDURE CUSBUSINESS.INIT D SDATAWINWORDAME GAFOXACHAPTERTS\CHTBTES TLANGOPT VCT LCRULE
LangOptionsEn,03/03/2002 11:08:08 PM. 13, CHT8TESTLANGOPT DADATAMINWORDAMEGAFOXSCHAPTERTEACHTSTES TLANGOPT PP LOBUSINESSOBJECT

LangOptionsEn 03/03/2002 11:08:08 PM 17 CHTSTESTLANGOPT D\ DATAW/INWORDAMEGAFDR\CHAPTER TS\ CHT8TES TLANGOPT. F<P CHAME

LangOptionsEn,03/03/2002 11.08:02 Pt 18 CHTSTESTLANGOPT D\DATAVWINWORD \MEGAFDRA\CHAPTERTEACH1STES TLANGOPT. FXP CCOMPANY

LangOptionsEn.03/03/2002 11:08:08 PM,38.CHTST ESTLANGOPT DADATAMWINWORDSMEGAFO=SCHAPTERTEACHTETESTLANGOPT. PP LCFILENAME

LangOptionsEn 03/03/2002 11:08:08 Pt 4 FRMCH1 BLANGUAGEOPTIONSTEST COMMANDA INIT PROCEDURE FRMCH1BLANGUAGEOPTIONSTEST COMMANDTINIT
DADATANWINWORDAME GAF XA CHARTER1BYCHIBTESTLANGOPT.SCT LT N

LangDptionsEn.03/03/2002 11:08:08 Pt £ FRMCH1BLANGUAGEOPTIONSTEST COMMAND INIT PROCEDURE FRMCH1BLANGUAGEOPTIONSTEST COMMANDA INIT
DADATANWINWORDAME GAFOXACHAPTERTSV\CHSTES TLANGOPT. SCT LCLABEL

LangOptionsEn 03/03/2002 11:08:10 PH. 1 FRMCH18LANGUAGEORTIONSTEST UNLOAD PROCEDURE FRMCHTELANGUAGEOPTIONSTEST LINLOAD
DADATANWINWORDAMEGAF DX CHAPTERTSVCHI8TES TLANGOPT.SCT LCHYSTRING

LangOptionsEr,03/03/2002 11:08:10 PM,38,CHTSTES TLANGOPT D:ADATAINWORD SMEGAFOXACHAPTERBACH18TESTLANGOFT PP LCFILENAME

LangOptionsEn 03/03/2002 11:08:10 PM.7 DATAENYIRONMENT BEFOREOPENTABLES PROCEDURE DATAENYIRONMENT BEFOREOPENTABLES
DADATANINWORDVME GAF DX CHAPTERTB\CHIBTES TLANGOPT FRT LCREPORTCURSOR

LangOptionsEn,03/03/200211:08:12 PM, 4 DATAEMYIRONMENT BEFOREOPENTABLES PROCEDURE DATAENYIRONMENT BEFOREOPENTABLES

DADATAWINWORDWME GAFOXACHAPTERTBICHIBTES TLANGOPT.LBT LCREPOR TCURSOR i

L] .
Figure 10. Setting LanguageOptions equal to 1 will output a comma-delimited list of details about each
variable that is undeclared to the Debug Output window.

LangOptionsEn,03/03/200211:08:14 PM 29, CHTETESTLANGOPT DADATAMWINWORD\MEGAFDRNCHAPTERTEACHISTES TLANGOFT MP LLTEST2 ..

What can we do with a set of comma-delimited strings in the Debug Output window? We can right-click and use
the Save As option to save the contentsto atext file. Thisisthe manual way if you did not do aSET DEBUGOUT TO
at the start of the testing. Once we have the text file we can examinethisviaaMoDI FY FI LE or APPEND FORMinto a
cursor.

& WLC Undedlared Variable Analyzer

Medule

Processed

procedure cusbusiness.init d: \presentations \essentialfox 2004\debuggingessel

05/13/0401;30: 13 PM

procedure cusbusiness, init d: \presentations \essentialfox 2004\debuggingesse

05/13/0401;30:13 PM

procedure cusbusiness, init d: \presentations \essentialfox 2004\debuggingesse

05/13/0401;30:13 PM

procedure cusbusiness,init d: \presentations \essentialfox 2004\debuggingesse)

05/13/0401;30:18 PM

d:'\presentations\essentialfox 2004 \debuggingessen tials\examples \ch 18 testial

05/13/0401;30: 18 PM

d:'\presentations \essentialfox 2004 \debuggingessen tials \examples \ch 18 testal

05/13/0401;30: 13 PM

d:\presentations\essentialfox 2004 \debuggingessentials \examples\ch 15 testal

05/13/0401;30:13 PM

dt\presentations\essentialfon 2004 \debuggingeszentials \examplesch 18 testal

05/13/0401;30:13 PM

dt\presentations \eezentialfox 2004 \debuggingeszentials e xamples\ch 18testay

05/13/0401;30:18 PM

procedure myrule d:\presentationsessentialfox 2004 debuggingessentials\ex

05/13/0401;30:18 PM

d:'\presentations \essentialfox 2004 \debuggingessentials\examples \ch 18 testal

05/13/0401;30: 13 PM

d:\presentations\essentialfox 2004 \debuggingessentials \examples\ch 15 testal

05/13/0401;30:13 PM

d!\presentations\essentialfon 2004 \debuggingeszentials \examplesch 18 testal

05/13/0401:30:13 PM

dt\presentations \eezentialfox 2004 \debuggingeszentials e xamples\ch 18testay

05/13/0401;30:18 PM

procedure frmch i8languageoptionstest. cmddose, init d: \presentations\essent

05/13/0401;30:18 PM

procedure frmch i8languageoptionstest.cmddose, init d: \presentations\essent

05/13/0401;30: 13 PM

procedure frmch 18languageoptionstest. cmddose. dick d: \presentations\esser|

05/13/0401;30: 21 PM

procedure frmch 18languageoptionstest. unioad d:\prezentations\essentialfox

05/13/0401:30:21 PM

dt'\presentations \eszentialfox 2004 \debuggingeszentials e xamples\ch 18testiay

05/13/0401;30:21 PM

procedure dataenvironment. beforeopentables d:\presentations \essentalfox

05/13/0401;30:22 FM

procedure dataenvironment, beforecpentables d: \presentations \essentialfox

05/13/0401;30; 24 PM

d:\presentations\essentialfox2004\debuggingessentials \examples\ch 15 testal

05/13/04 01:30: 26 PM

Text?d:\presenmﬁons'ﬁssentialf'onDU%debuggingessenﬁals'nﬁxamples\evaluatememvars.txt D v2.0.3
Report| EvalUndedaredvars, frx
Double or Right-Click on record to edit module
22 instances of undedared variables
|Variable Line Mo Obiject
Incursors 10 |cusbusiness.init
lreturn 11|cusbusiness.init
lemycursor 19 |cusbusiness, init
lcrule 20 |cusbusiness.init
lobusinessobject 23 |ch igtestlangopt
|ctemppath 32 |ch i8testlangopt
liresult 33|ch 18testlangopt
llehouldshowinlist 39 |ch 18testlangopt
lczecondvaronline 45 |ch 18testiangopt
Ixreturnval 5 |myrule
lerulereturn 46 |ch igtestlangopt
cname 52 |ch 18testlangopt
ccompany 53 |ch 18testlangopt
Icfilename 74|ch 18testiangopt
ltnow 4|frmch i8languageoptionstest.cmddose. init
Iclabel & |frmch iglanguageoptionstest.cmddose, init
|cnotdedared 1|frmch 18languageoptionstest. cmddose. dick
lemystring 1|frmch 18languageoptionstest. unload
Icfilename 74|ch 18testiangopt
lcreporteursor 7 |dataenvironment.beforeopentables
lcreportoursor 4|dataenvironment.beforeopentables
IIItestZ 29 |ch 18testlangopt
B

Figure 11. The undeclared variable output from the Debug Output window can be saved and analyzed using
the EVALUNDECLAREDVARS.SCX form.

One might be asking why someone might go to all the trouble of creating aform to view thelist of undeclared
variables. Thereis one advantage we wanted to exploit which isthat you can double-click or right-click on any entry
in the grid and the source code is opened up using the new EDI TSOURCE() function. This gives us a quicker way to
fix all the variable declarations that we feel are necessary.

How to use the Coverage Profiler to debugging code

The Coverage Profiler isatool provided by Microsoft to analyze executed code for performance (profile mode) and
determine what lines of code were executed (coverage mode) during atest run. Thistool gives usimportant
information with both sides of the analysis.

The profile modeis an excellent way to determine exactly where the code is slowing down. It shows us how
many times each line of code is executed by the number of hits and the length of time the first execution took and
how long the average time was for all the executions. Thistool allows usto narrow down the bottlenecksin the code.

Ee Microsoft Visual FoxPro Coverage Profiler

b 0 A 2 e24alo LCnapie O M
= 2 A=
dataenvironment d:\data\winword\megafox\chapter 18\ch 18testiangopt.frx
dataenvironment d:\datawinwordmegafox \chapter 18\ch 18testangopt.lbx

All Classes, Objects, Procs d:\data\winword\megafox \chapter 18\ch 18testiangopt.mpr
All Classes, Objects, Procs d:\data\winwordmegafox \chapter 18'\ch 18testiangopt.prg

LPARAMETERS toCalling

SET COVERAGE TO chlB8TestlLanglptCoveraged.txt

RELERSE golpp

PUBLIC gokpp
PRIVATE pnCounter
LOCRL llReturnResult, ;
1lnCldLanguagelpts, 7
-000033 B -000033 lcDebuglutSavedFile

-585855 7 -585855 leDebugOutSavedFile = GETFILE ("TXTI", "DebugCut™)

-0ooo8e7 -ooooae7 IF EMPTY {lcDebugCutSavedFile)

-000000 -000000 ACTIVATE WINDOW "Debug Cutput”
ELSE

-002423 r -0Dz24z23 SET DEBUECUT TC (leDebuglutSavedFile)
ENDIF

Figure 12. The Profile mode shows the performance of each line executed.

The coverage mode is more useful in testing because it helps us ensure that we execute the correct code aswe
step through our test plan. Onetip we like to recommend is changing the character that represents the code that was
not executed. We use the question mark (?) because it reminds usto ask the question: Why was this code not
executed during thistest? Y ou can change this in the Coverage Profiler Options by pressing the fifth button from the
left on the toolbar at the top of the main form.

Eé Microsoft Visual FoxPro Coverage Profiler EE®E
Eé d:\data\winwordimegafox\chapter18\ch18testlangoptcoveraged.txt - Coverage Profiler BE®E

=H B2 [Fx o A

dataenvironment

All Classes, Objects, Procs
All Classes, Objects, Procs
frmch 18languageoptionstest

d:\datawinwordmegafox \chapter 18'ch 18testangopt.lbx

d:\datawinword\megafox \chapter 18\ch 18testiangopt.mpr
| d:\data\winword'megafox\chapter 18\ch 18testiangopt.prg

d:\data\winwordmegafox\chapter 18\ch 18testiangopt.scx

LPARAMETERS toCalling

SET COVERAGE TO chlB8TestLangOptCoveraged.txt

RELERASE golpp

EUBLIC gofpp

ERIVATE pnCounter

LOCAL llReturnResult, ;
InCldLenguagelpts, i
lcDebugCutSavedFile

lcDebuglutSavedFile = GETFILE ("TXTI", "Debuglut"}

IF EMPTY (lcDebuglutSavedFile)

ACTIVATE WINDOW "Debug Cutput™
ELSE

SET DEBUGOUT TCO (leDebugCutSavedFile)
ENDIF

Figure 13. The coverage mode shows which lines of code were executed, and more important, which lines
of code were not executed during the debugging session.

How to start recording coverage logs
The Coverage Profiler is pointless unless you have a coverage log for it to analyze. Thelog is created by the
debugger recording statistics on each line of code it executes. Thislogging can be turned on two ways.

Thefirst way to turn on the coverage logging isin code. Determine the place that you want the logging to begin.
At that point in the code add the following line of code:

SET COVERAGE TO c:\tenp\billingperformance.txt

Thisturns the coverage logging on as well as directs the statistics to afile with the specified name. If thefile did
not exist it is created. If it exists, it will be overwritten unless you use the ADDI TI VE clause after the file name. At the
point in the code that you want to shut off the collection of statistics enter in the following line:

SET COVERAGE TO

Thisturnsthe coverage logging off aswell as closes the coverage log file. We have noticed in some versions of
Visual FoxPro that the coverage log file was not always closed until a CLOSE ALL was executed. Thisis definitely
fixed in Visual FoxPro 7.

The other way to start coverage logging is to use the debugger user interface. If you are using the Debug Frame
you can toggle coverage logging from the Tools | Coverage Logging menu. If you use the FoxPro Frame for
debugging you only have the option of clicking the Toggle Coverage L ogging toolbar button. Either way, when you
toggleit on you are presented with the Coverage dialog (see Figure 14). Y ou enter in the file name (full path unless
you want it created in the default Visual FoxPro directory) and determine if you want afresh file or to append on to an
existing log.

Lo pragran execLtion
: 6]
e | k|

||::"-.temphbillingperfurmance.t:-:t J Caricel

" fppend o [Oyepwrite

Figure 14. The Coverage dialog is presented if you toggle coverage logging on via the debugger interface.

To turn off the logging interactively you select the same menu option (Debug Frame) or pressthe Toggle
Coverage Logging toolbar button (Debug or FoxPro Frame). After you toggl e the coverage logging off you can open
up thetext file with the Visual FoxPro editor or use the Coverage Profiler to do some sophisticated analysis.

Y ou must have both the coverage log and the source code that was executed to use the Coverage Profiler. It
needs the source code to mark up which lines of code were not executed and to show the performance timings for the
lines that were execute. If someone sends you a coverage log, you will only be ableto open it with atext editor if you
do not have the exact source code that was run.

One observation of interest isthat if you have the Visual FoxPro debugger active, IntelliSense turned on, and
typein the Command Window or an editor, you will see code executed in the debugger as I ntelli Sense processes.
The coverage logs never show any statistics for the Intelli Sense engine.

What are the different columns in the Coverage log files?

(Example: MENUDESIGNERCOVLOG.TXT)

The coveragelog isatext file that is generated by Visual FoxPro if you have turned coverage on while running code
inyour application. Thistext fileisacomma-separated file with six columns of information to assist you in finding
performance bottlenecks and to determine which code was executed and not executed.

Thefirst column is the execution time for the line of code. Thetimeis either the execution time for the line of
code, or if the line calls other procedures/functions/methodsit isthe timeit takes for all subordinate code to execute.
Thetimeis measured in seconds, accurate to 6 decimal places.

The second column is the name of the object containing the code that was executed. For example, if the codeis
in aform, the name of the form isrecorded. The column isleft blank if the codeisin a procedure or program.

The third column is the name of the method, procedure, or function being executed. If the code is executed in a
method, the name of the object is attached to the method name in the object.method format.

The fourth column isthe line number of the code that was executed. The line number isthe actual line number
from the start of the program or method. If aline of code is broken up into several lineswith continuation character

(semi-colon), it will be thelast line of that code. This line number can be used to open up the editor with
EDI TSOURCE()

Thefifth columnisthe fully qualified file name of the object containing the code that executed.

Thelast column isthe calling stack level for the executing code. We could not find any part of the Visual FoxPro
Coverage Profiler that does anything with thisinformation, but it is available if you want to write an add-in that would
useit to analyze the code. One idea of an add-in that would use the calling stack isto see what the deepest level of
callsisinthe code that was tracked in a coverage log.

How to extend the Coverage Profiler to be even better at

finding the slow parts of your application
(Example: CPMODULEPERFORMANCE.SCX, CPMODULEPERFORMANCEREG.PRG)

The standard profiling mode of the Coverage Profile shows the performance of theindividual lines of code that were
executed. What if you wanted to see the combined performance numbers of all the lines of code within a method or
for amodule? One solution would be to pull out a calculator and add up all the lines displayed in the Coverage
Profiler. The flaw with thisis that the Profiler mode shows the average execution, not the actual execution speed. The
more appropriate method would be to create an add-in to the Coverage Profiler that summarizes the line execution
detailsinto anice form for the developer. This section will discuss the program that does this and also demonstrates
how to register a Coverage Profiler add-in that callsaform that is displayed when the add-in is activated.

The CPM ODUL EPERFORMANCEREG.PRG is a program that registers the add-in and adds a toolbar button to the
main Coverage Profiler form. The Coverage Profiler passes areference of itself to the add-in; therefore you must
accept a parameter in the add-in program. The majority of the code in the program is safety code. What we mean by
thisisthat it checksto make sureit is called from the Coverage Profiler, it has not been called previously in this
Coverage Profiler session, and insures that the toolbar button is instanced only once.

Listing 3. Code from CPMODULEPERFORMANCEREG.PRG is an example of how to write code for a Coverage
Profiler add-in.

LPARAMETERS t oCover age

LOCAL || ReturnVval,
| oControl

| F VARTYPE(t oCoverage) # "O' OR TYPE("toCoverage. cAppNane") # "C"
MESSAGEBOX(" You need to be running the VFP Coverage Profiler " + ;
"for this programto be effective.",

0 + 16,
_screen. Caption)
|l Returnval = .F.
ELSE
|l Returnval = . T.

* Loop through all Coverage profiler tool bar controls to see if the
* cndModPer f ormanceButton is already instantiated. We do not want
* nore than once instance of this control registered.

FOR EACH | oControl I N toCoverage.frmvai nDi al og. cnt Tool s. Control s

| F LONER(| oControl . Class) == "cmdnodperformancebutton”
WAI' T W NDOW " Modul e Performance Button already |oaded!" NOMI T
Il Returnval = .F.
EXIT
ENDI F
ENDFOR

IF || ReturnVval

* Button is not on Coverage Profiler, so we add it.

t oCover age. f r mMvai nDi al og. AddTool (" cndModPer f or manceButton")
ENDI F

ENDI F
RETURN | | Ret ur nVal
DEFI NE CLASS cndModPer f or manceButt on AS cndCover ageTool Button

* This button subclass is of the CoverageTool Button Cl ass
* (see bel ow)

Caption = "M

Tool Ti pText = "Modul e Performance Anal yzer Add-in"
Aut 0Si ze = .F

W dt h = 22

Hei ght = 23

PROCEDURE | ni t
I F VERSI ON(5) > 600
this. Special Effect = 2
ENDI F
ENDPROC

PROCEDURE Cl i ck
t hi sformset . RunAddl n(' CpModul ePer f or mance. scx')
ENDPROC

ENDDEFI NE

DEFI NE CLASS cndCover ageTool Button AS CommandButt on

* This base class is borrowed directly fromLisa Slater Nichols.

* |t integrates the button into the toolbar in an appropriate fashion.
* This class also includes basic error handling as built into the

* Cov_standard cl ass.

| Error = . F.
Aut 0Si ze . T. && Text will fit autommtically

PROCEDURE | ni t
* Use some fornmset properties to make the new tool "fit in"
W TH t hi sfor nset
t hi s. Font Nane
this.Fontltalic
this. Font Bol d
this. FontSize
ENDW TH

. cBaseFont Nane
.| BaseFontltalic
.| BaseFont Bol d
. hBaseFont Si ze

* Now use the container's physical properties
*to fit in there as well:
THI S. Aut osi ze = . F.

W TH THI SFORMSET. f r mVai nDi al og. cnt Tool s
THI' S. Top = . Control s(1). Top
THI S. Hei ght = . Control s(1). Hei ght
ENDW TH

RETURN (NOT THIS. | Error)
PROCEDURE Error (tnError, tcMethod, tnLine)

* Designed to use the FornSet's error method which, in this
* case does nothing nore than put up an error MessageBox.

THI S. | Error = . T.

I F TYPE("thi sformset. BaseCl ass") = "C"
thisfornset.Error(tnError, this.Nane + ":" + tcMethod, tnLine)
ELSE
ERROR t nError
ENDI F
ENDPROC
ENDDEFI NE

% Module Perfonmﬁce Ana.ly.fz.e;

Module Filteri Al Modules = 40,561491 Total Seconds
By Module] By Line of Code] Right or Double dick on record to'open up editor.
Madule Total Huost Fil -
hrmrmenudesigher. emar 12 469835 d:\devvipapps\menudesignerlibshamenudesigner vox
mairy 4.140717|d:\devvipTappsimenudesianersprasimain.pra
mrenudesigner load 3.319546] d:\devvipapps\menudesignerilibshamenudesigner vix —
frmmenudesigner. openmenu 3.314787 | d:\devvipTappsimenudesignerlibshamenudesigner. vor
hmrmenudesigner.refrezh 1077769 d:\devvipapps\menudesignerilibshamenudesigner vix
frmmenudesigner. pgtmenudezigner. pagfundan [.E57381 | d:\devvipFappsimenudesignerlibshamenudesigner vox
mrenudesigner. cridnest click [1.514510] d:\devvip?apps\menudesignerilibshamenudesigner vox
frmmenudesigner. pgtmenudesigner. pagfundan 11365988 | d:\devvipFappsi\menudesignerlibshamenudesigner vor
hmrmenudesigher. tetstatus.refresh 11 155488| d:\devvip?apps\menudesignerilibshamenudesigner vix
frmmenudesigner. pgimenudesigner. paggeners 0.143257 | d:\devvipFappsimenudesignerlibshamenudesigner. vox
oletresview expand 1. 126559| d:\devvip? appsmenudesignerilibshcactives vex
frmmenudesigner. oletreeview, nodeclick 0.125282 | d:\devvipFappsimenudesignerlibshamenudesigner vox
fmrmenudesigher. positionmenurecard 11123894 | d:\devvipapps\menudesignerilibshamenudesigner vix
frmmenudesigner. init 0.112114| d:\devvipFappsimenudesignerlibshamenudesigner. vox

Figure 15. The Coverage Profiler Module Performance Analyzer shows the total time it takes for each
method/module and the execution time for each line (on the By Line of Code page).

The form starts out by performing three queries on the FromLog cursor (created by the Coverage Profiler). The
FromLog cursor contains the timings on each line of code that is executed and tracked in the coverage log by the
debugger. Thefirst query isasummary of the code execution by each module. This cursor is used on the By Module
page. Thiscursor is sorted by total time for the modulein decending order. Thisis doneto help the devel oper
determine the slowest modulesin the analysis. The second query isfor al lines and thetime it takes for each line for
each execution. This cursor is sorted by Module, by line no, and by execution time. This cursor is used by the By
Line of Code page. Developers can use thisinformation to see which lines are taking the longest and if thereisa
significant difference each time the line of codeis executed. It is not uncommon to see the same line of code degrade
in performance when it is executed over and over, especialy if thereisamemory leak in the method. Thelast query is
used to popul ate the module combobox.

Theonly real important property for the add-in form isthat it must have the ShowWindow property setto 1 —In
Top-Level Form because the Coverage Profiler isaTop-Level formset based tool. The total number of seconds will
reflect the number of seconds for the modulesincluded in the list. This can befiltered by selecting a specific module
using the combobox. When you select a specific module afilter is applied to the two performance analysis cursors.

Thetwo grids have DbIClick and RightClick calls to open up the source code in the appropriate editor using
the new EDI TSOURCE() function which isthe only reason thistool requires Visual FoxPro 7. If you have not yet
upgrade to Visual FoxPro 7 and want to use this tool we suggest that you override the form’ s EditM odul e method.
Activating the source code editor allows the devel oper to make changes live or at least view the exact code that
might be a potential bottleneck.

What's new in VFP 9 (Europa)

Microsoft did not place the Debugger high on the Europa priority list. They implemented three changes that we have
found so far (as of Beta 1).

Watch Window Errors

The Watch window literally accepts anything you typeinto it and tries to evaluate the expression. If errors occur
prior to VFP 9 you had no way of knowing it. In VFP 9 the errors are displayed in the Debug Output window.

Visual FoxPro Debugger k EEE
File Edit Debug Toole Window Help

@] »om B OO I | E
Trace M[=1ES e (o]
Object: | | Pracedure: Locals for: v
A Mame Walue
2
v
3 >
Watch: [ths. 1
Mame Walue Type
05(7) "Service Pack 1" C |
PROMPT() e c
WERSION(T) "Wisual FoxPro 09.00.0000.1718 for Windows [May C
SET("Printer",2) "ACROBAT PDFWRITER" C ”
v
(Calistack Unavailable: Trace Between Breaks is Off) | THIS can only be used within a method. o

Figure 16. The Watch Window allows you to include almost anything, including code that triggers errors.
VFP errors triggered are now displayed in the Output window.

Output Window scrolls with mouse wheel

One bug fix the Fox Team included in Europa.is the ability to use the mouse scroll wheel in the Output Window. This
is not an earth shatter fix, but for those of uswho are accustomed to using the wheel it is an nice addition.

Debugging reports

Reports have never interacted with the Visual FoxPro debugger prior to Visual FoxPro 9. This presents a problem for
devel opers who have reports with user-defined functions (UDFs) called in report expression when the UDFs are not
working properly.

Visual FoxPro 8 throws an error (CANCEL or SUSPEND is not allowed - error 1651) if you execute SET STEP ON
in aprocedure or function called from areport. One of the alternatives you have to debug code isto simulate the call

after setting up the data viathe Command Window or a program. Alternatively, devel opers who stage the data using
SQL-Selects before calling the report call the UDFsin the SQL-Select where the debugger is avail able rather than
calling the UDF in the report expression.

The changes to the Report Designer and specifically because of the new ReportListener object required the Fox
Team to integrate debugging capabilities with the reports. Theintegration is not limited to the ReportListener. You
can debug your own UDF code aswell, as shown inFigure 17.

Download!

The downloads for this chapter, available from www.whitelightcomputing.com, include a report and a
procedure file used to demonstrate how the debugger can be called when previewing or printing a report.
The report is called AuthorDebugging.FRX, and the program is called Authorlnitials.PRG.

DeE[sh §ne A ERE LI R
= =0ReE" :

=T

¥

¥

g {

il In i Di_ﬂ\ect' [I F'_mcedure j
A_Pég_EHaa.dé'_. 1 FUNCTION AuthorInitials (tcLastName, tcFirstName)® | .

A Detal 2 i

3 LOCAL lcFirstInitial, A

= 4 lcLastInitial ‘

5 '

r 6 SET STEP ON -

7 (

= 8 lcFirstInitial = UPPER(LEFTC (tcFirstName 1)) -

| 9 leLastInitial = UPPER (LEFTC (tcLastName, 1)) 3
Y, 10 - ,f(
A 11 RETURN lcFirstInitial + lcLastInitial sl 2
< > %
| Creating output.. 20% 1 secis) {
o | [|

B o " Y VR -4 R ol o ¥4 -

F

Figure 17. The debugger now works with reports so you can step through code called from a report
expression or triggered through a ReportListener.

This enhancement is critical for developers who are writing ReportListener extensions otherwise you would not
have any way to debug your code as the report was executing. See Chapter 7, “ Extending the Reporting System at
Run Time” for more details on the ReportListener object. The debugger is called in the same manner with SET STEP
ON (or your favorite style of calling the debugger) in your code. The debugger does not interact with report
expressions unless they trigger custom code in a ReportListener object, or call code in an object you created
(different from a ReportListener), or auser-defined function in program code.

The example we ship in the downloads is very easy to follow. First we created areport and in one of the report
expressions we call the Authorlnitials function. The Authorlnitials function takes the first and last name and
assembles the initials from the name. In the function we added a SET STEP ON. To simplify running the report we
added the SET PROCEDURE TO codein the report dataenvironment’ s BeforeOpenTables method. The Trace window
is displayed when the report is previewed or printed to a printer using the IDE toolbar buttons or the REPORT FORM
command. ???There are a couple of problems when you cancel code running in the report via the debugger, | have
reported this to Microsoft— RAS ?77?

The Fox Team also wrote aspecial ReportListener subclass to help with debugging object assisted reports. This
classis part of the Fox Foundation Classes and is called DebugListener, found in the ReportListener.V CX class
library, which islocated in the VFP. It is very easy to work with. First you instantiate the DebugListener class, and
then you passit to the REPORT FORM command like this;

| oDebuglLi st ener = NEWOBJECT("debuglistener", HOME()+"ffc_reportlistener.vcx")

REPORT FORM Aut hor Debuggi ng PREVI EW OBJECT | oDebugLi st ener

The DebugL istener class records details about how the report is executed and how the various objects are
rendered. Along the way it records various property settings during the different stages of report execution. This
classwill be extremely handy in determining why areport is not functioning as expected. The report is never
displayed or printed when the DebugL istener is the ReportListener hooked into the report. The report is processed
and the different properties are recored and stored in atext file. Thistext file (see Figure 18) is displayed after the
report isfinished. Y ou can review the contents of this report to determine how the report was processed from a
ReportListener perspective.

(e —

"]
i
N:

= =t Se————
DEBUCLISTENER LORDRELCORT
MEMBERS:
-ALT.OWMCDAIMESSREES=_T.
-APPNEME=VFE Report Cutput Class
-BREECLASS=Heportli=censr
-CLAS5=Debuglistener
-CLASSLIBRARY=c:\program files\microsoft wisual foxpro S\ffc_reportlistener.vcik
- COMMANDCLAUSES= (Cbject)
- COMMENT=
-CONFIGURATIONOBJITYEE=1000
-CONFIGURATIONTRBLE=
-CORRENTDETASESSTON=1

-DRIVINGALIAS=

-DY¥YNAMICLINEHEIGHI=.T.

-FRXDETRSESSION=2

-GDIPLUSGRAPHICS=0

-HRDERROR=_F.

- INCLUDELCADANDUNLOAD=.T_

-ISRUNNING=_F._

- ISRUNNINGREDORTIS=_F.

-ISSUCCESSCR=_F.

-LAST BMESSRACE=

-LICHNOREERAORS=.F.

-LISTENERTYPE=-1

-LOADFRECURSOR=_F.

-NaME=debuglistener

-CUTEUTEACGECCUNT=0

-OUIDUITY¥PE=-1

-PRGENC=0

-PAGETQTAL=0

-PRBRENTCIASS=Utilityrepocrclistener

-EREVIEWCONTAINER=_HNULL.

-PRINTJOBHNRME=

-QUIETMCDE=_F._

-READCCNFIGURETICN=0 g
< »

Figure 18. The DebugListener class records numerous property settings and rendering processes as a
report is executed. The findings saved in a text file and displayed when the report is done.

Cool bugs to debug

(Example: TRICKYBUGS.SCX)

We all run up against code that is difficult to debug. Sometimesit is our own code that drives us crazy, other timesit
is code from team members, and other timesit isfrom someonein the Fox Community (afriend we are helping out, a
developer who isaclient, or someone who posts some tricky code on one of the forums). This section is dedicated to
demonstrating some particular tricky code and sticky debugging sessions we ran into in the months dedicated to
preparing this session’ s presentation material .

N Tric;l(y Bugs - are not jﬁst for kids and rabbits?

h—his data is ~ | ~| ipk cname tup'date'd |
4 ¥ 1[Rick Schummer 02/29/04 11-12:54 PM
important to 2|Rick Borup 03/21/04 1113118 P
view when the 3{Jacci Adams 03/29/04 11:13:23 PM
form is 18|DevEssentials Attendee 05/16/04 10:40:57 PM

- w
displayed for a B =

presentation on

deb ing. '

100000 ||calc Taxes |

‘ Slow ‘ =

‘ Slower ‘

Figure 19. This form demonstrates the tricky bugs discussed below.

Objects that are not what they appear

One developer came to me and asked a simple question (at least it did at thetime): “why is this editbox not displaying
the contents of the column it is bound to?”’

The form, when it was run showed an empty editbox. The developer pointed to the editbox on the form which
was called edtComment. We went through the list of usual problems:
- The Control Source property was properly set.
The cursor existed and the column wasin the cursor.
The cursor was based on aview and the view had the proper table and column selected.
No code in the start up of the form was unbinding the Control Source.
Using SYS(1270) , we proved that the Control Source was indeed active.
We checked into the security settings for the user to seeif they did not have access to the data.
L ooking at the cursor when the form was live showed the cursor was queried appropriately, was positioned
on the correct record, and there was data in the memo column that the editbox was bound.

We looked at this problem for agood 15 minutes, checking out the above issues. Then | ook at the Property
Sheet to dig down deeper to seeif the class was sub-classed from another class that had some code that was

removing the Control Source. I nteresting, we found that the object was not a editbox, rather it was alistbox. That
explained alot.

Module Performance

You have all runinto slow code. Performance is not a problem we accept as FoxPro devel opers because FoxPro is
Ilghtnl ng fast. So what can slow the Fox down?

To many callsto the form Refresh() method.

Queries that are not Rushmore optimized.

Infinite or long loops

Queries with hundreds of thousands of records from a SQL database
Old hardware.

The FILE() function.

The FILE() function? Y ep. | specifically checked al the above items on aform initialization for acustomer. The
form was taking 30-60 seconds depending on the hardware. | used the SQL Showplan feature of VFP (SY S(3054)) to
wring out 7 seconds from one query by adding an index to atable, but this still left 23 seconds. | placed DEBUGOUT
PROGRAM), SECONDS() commands at the beginning and end of Load, Init and Activate event methods. This
allowed me to determine which methods were slow. The form Activate was taking 95% of thetime. Thisiswhere |
found the SQL Select which took alittle more than 7 seconds. It still was slow. | inserted more DEBUGOUT
commands to see exactly where the problem had hidden itself. To my shocking surprise, it was aFILE() function. The
function was checking for an image file that was displayed on the form. The kicker was, theimage wasin afolder
along with 20,000 (yes, twenty-thousand) files. This “search” wastaking avery long time. Lesson learned? Never
place that many filesin the same folder! The other thing | forgot during this process was to use the Coverage Profiler.

Why is this happening?

Similar to the performance bug, | struggled to find a bug that was happening only periodically. It only happened
under certain condition which is not that uncommon, but this time the bug was hidden in an event that was not
triggered regularly because it was strictly triggered by user interaction.

This bug required a tedious foundation of DEBUGOUT commands and Event Tracking. | added the DEBUGOUT
commands to all the methods in the form that had code and turned Event Tracking on for the following events:
Activate
Click
DhbiClick
Deactivate
Destroy
Error
GotFocus
Init
InteractiveChange
KeyPress
Load
L ostFocus
ProgrammaticChange
Resize
RightClick
Scrolled
Unload
Vdid
When

| ran the form and started interacting with it. When the bug appeared | was able to see the order of methods and
eventsthat fired and how the code interacted to trigger the problem. Thisisjust one approach, and it was definitely
tedious.

Variable/Property Scoping problems

Ever run some code having side-effects? Y ou know the code, the type of code which changes memory variables
unexpectedly. It usually happens when the memory variableisimplicitly PRI VATE because the developer did not
declareit in acalling program, and later calls a procedure, function, or method with another undeclared instance of
the same variable.

Resources

Debugging Visua FoxPro Applications, by Nancy Folsom, Hentzenwerke Publishing, ISBN: 1-930919-20-4
MegaFox: 1002 Things Y ou Wanted To Know About Extending Visua FoxPro (Chapter 18), by Marcia Akins,
Andy Kramek, Rick Schummer, Hentzenwerke Publishing, ISBN: 1-930919-27-1

Conclusion

We all have horrific stories and experiences that we can tell personally when debugging and testing were not done,
or not donewell. The key to debugging isto learn from the mistakes, improve the debugging process, and find
techniques that |ead to defect-free releases. Hopefully, thiswhitepaper presented some ideas that will lead you in the
right direction.

It isimportant to remember, while we all strive to make that perfect release and to write defect-free code, that
software and the environment that it runs in gets more and more complex. This complexity will likely continue to make
our jobs as software developers more difficult. Learning better debugging techniques and sharing them with the
devel opment community will establish best practices. The better we get as a community, the more our customers will
begin to trust in our capabilities as an industry.

Special Thanks

| want to thank the guinea pigs that put up with the rehearsals to insure that this presentation was refined for
primetime at the DevEssentials 2004 Conference. The Detroit Area Fox User Group members provided excellent
feedback to me and | really appreciate the frank and honest eval uations that were provided.

| want to thank Steve Dingle, tech editor of MegaFox: 1002 Things You Wanted To Know About Extending
Visual FoxPro, who reviewed all the material in Chapter 12, VFP Tool Extensions and Tips and Chapter 18, Testing
and Debugging, which some of this material was borrowed.

Copyright

Copyright O 2004 Richard A. Schummer. All Worldwide Rights Reserved

Author Profile

Rick Schummer is the President and lead geek at his company White Light Computing, Inc., headquartered in southeast Michigan,
USA. He prides himself in guiding his customer’s Information Technology investment toward success. After hours you might find
him creating devel oper tools that improve developer productivity, or writing articles for his favorite Fox periodicals and user
group newsletters. Rick is a co-author of Deploying Visual FoxPro Solutions, MegaFox: 1002 Things You Wanted To Know About
Extending Visual FoxPro, and 1001 Things You Always Wanted to Know About Visual FoxPro. He is a founding member and
Secretary of the Detroit Area Fox User Group (DAFUG) and a regular presenter at user groups in North America. Rick has
enjoyed presenting at GLGDW 2000-2003, Essential Fox 2002-2004, VFE DevCon2K2, and scheduled to speak at the Southwest
Fox 2004 conference.

raschummer @whitelightcomputing.com, rick@rickschummer.com,

http: //maw.whitelightcomputing.com and http: //www.rickschummer.com

