

White Light Computing’s

Project Builder and
Projecthook

Richard A. Schummer

President
White Light Computing, Inc.

42759 Flis Dr.
Sterling Heights, MI 48314

Voice: 586.254.2530
Fax: 586.254.2539

E-mails: raschummer@whitelightcomputing.com
rick@rickschummer.com

Web sites: www.whitelightcomputing.com
www.rickschummer.com

Overview
This whitepaper will demonstrate a number of techniques for projecthooks with a real life, in
production projecthook. This projecthook has been in use by me since the end of the VFP 6.0
beta. It has been enhanced over the years and rewritten in 2003 for a conference presentation.
We will also demonstrate how the projecthook and project object can be used in conjunction with
each other with a new tool called the WLC Project Builder (formerly called the RAS Project Builder
and WLC Project Builder).

How to enhance the base projecthook
I have included the WLC ProjectHook classes as the examples for this session. This set of classes
is an extensive example with several capabilities built in. This set of classes was created for the
internal development at Geeks and Gurus, Inc. and is being made available on the
www.WhiteLightComputing.com and www.RickSchummer.com sites as part of my free classes
available for the Fox Community. This projecthook and all the features included are designed to
be completely extensible. There is no real need to modify the base projecthook, rather add
functionality via a separate hook class. There are numerous examples of extensions and a
detailed discussion on how to use these classes in this whitepaper.

Figure 1 – CProjectHook5 class library that shows the class hierarchy for the projecthooks and
other features.

If you decide to add your own extensions, please send me an email so I can set up a link to
the site that you have uploaded the hook extension. It is my intention that the WLC ProjectHook
be an open architecture and is developed in the spirit of the Open Source license and concept.

Base ProjectHook
Example: phkBase (CProjectHook5.vcx)
There are several files that make up the CProjectHook5 class library. The first projecthook in the
class hierarchy is the phkBase class. This class is a direct subclass of the VFP projecthook. It is
always good practice to build your own copy of the VFP classes so you have a basis for
enhancements at one level of the class hierarchy. All other projecthook classes are subclassed
from the phkBase class (see Figure 1). We added a several methods and properties at this level
that we knew would be handy for all the projecthooks we developed (see Table 1 and Table 2)

Table 1 –Methods added to our phkBase projecthook with a short description of their usage.

Method Description
cDefaultMessageType_assign This method is called when ever the cDefaultMessageType property is

Method Description
changed through an assignment.

CreateHookCursor This method is called when a blank hook cursor needs to be created so
developers can register their own hooks.

DeveloperMessage This method is used to display a message to the developer. Message
is processed to the developer based on the cDefaultMessageType
property [(W)ait, (M)essageBox, (D)ebugout, (S)creen]. It always is sent
to the DEBUGOUT window, no matter the setting.

ErrorCount This method returns the number of errors recorded in the
aErrorDetails[] collection. A parameter of 1 returns the number of rows,
a 2 returns the number of columns. This was created because VFP
cannot use ALEN() on the _vfp projecthook reference.

GetHookList This method is called to create the list of hook classes and is stored in
the cXMLHookList property.

GetHookListXml This method is called to get the XML that contains the information
about the hooks registered in the project.

GetHookReference This method returns a reference to a hook object that either is named
via the hook's cHookIdentifier property or the cHookIndexName stored
in the project file XML (maintained via the frmHookMaintenance form
class).

GetPProp This method returns the value of the property sent as a parameter. This
allows developers to access protected properties with a simple
interface.

GetUserFieldContents This method is called to get the contents of the USER field in the
header record of the project file.

InstanceHookClasses This method is used to instantiate the optional hook class(es). These
references are assigned to the aHook[] collection. This method
instantiates the class designated in the cHookClass/cHookClassLib
(one class) and/or the USER field in the PJX.

InstanceHookClasses_Post This method allows developers to run code after the registered hook
classes are instantiated, additional post processing code.

InstanceHookClasses_Pre This method allows developers to run code before the registered hook
classes are instantiated. If the method returns a .F., the registered
hooks are not instanced.

InstanceOneHookObject This method is called to instantiate and register a hook object based on
the information passed in the parameters.

nHooks_Access This method counts the number of hooks registered in the aHook[]
collection property.

oProject_Access This method grabs the _vfp.ActiveProject object reference each time
the property is accessed.

Release This method releases the instantiated object.
SaveHookList This method is called to save the existing list from a cursor to XML in

the USER field of the project file.
SelfTest This method is used to store test code. SelfTest() is called with numeric

parameters to test different functionality.
SetHookList This method is called to save the list of hook classes from the

cXMLHookList property.
SetHookListXml This method creates the actual text (XML) that is stored in the project's

header record USER field.
SetUserFieldContents This method is called to save the user field contents.
ShellAdditionalInit This method is us ed to extend the Init() method without having to

override the Init() code in subclasses. Called from the end of Init()
method.

zzAbout This method contains any documentation specific to the class.

Table 2 – Properties added to our phkBase projecthook with a short description of their usage

Property Description
aErrorDetails[1,7] This property is a collection of trapped errors recorded by the

projecthook.
aHook[1,2] This collection contains object references to other hooked objects. The

Property Description
first column is the object reference, the second column is an optional
description.

Builder This property is the program (PRG) or visual class library/classname
(VCX) that points to the builder for the class.

BuilderX This property is the visual class that points to the BuilderB/BuilderD
Builder for this class.

cBlockFooter This property contains the string that is used to delimit the end of the
XML that holds the hook registrations in the project file header record, in
the user column.

cBlockHeader This property contains the string that is used to delimit the beginning of
the XML that holds the hook registrations in the project file header
record, in the user column.

cBlockParseClassLib This property contains the class library that the Block Parse class
resides in. If left blank the class will look for the class in this same class
library as the projecthook.

cCurrentHookClass This property contains the name of the hook class that is in the process
of being instantiated. It is used to report a problem when instancing the
object.

cCurrentHookClassLib This property contains the name of the hook class library of the hook
class that is in the process of being instantiated. It is used to report a
problem when instancing the object.

cDefaultMessageType This property indicates what type of default messaging is used for
testing the class. Passing second parameter to DeveloperMessage() will
override. Valid options are (W)ait, (M)essageBox, (D)ebugout, (S)creen.

cHookClass This property contains the name of one class that is instantiated to the
aHook collection. The class library that this class is in is designated in
the cHookClassLib property.

cHookClassDescription This property contains the description of the single hook object
instantiate from the cHookClass/cHookClassLib.

cHookClassLib This property contains the name of one class library for the class
instantiated in the aHook collection. The class that this class is in is
designated in the cHookClass property.

cHookIndexName This property contains the index name (used for lookup) for the single
hook.

cProjectName This property is the fullpath and project file name that is typically
determined by the ActiveProject.Name reference. For some reason VFP
loses this reference at times and therefore we are tracking it here to
avoid apparent bugs.

cVersion This property contains the version number of the projecthook.
lUseMultipleHooks This property indicates to the projecthook to look in the project file (PJX)

header record USER field for additional classes to hook into this object.
nHooks This property will return the existing number of hook objects properly

registered.
oProject This property contains an object reference to the project object

instantiated for the associate project.

The Builder and BuilderX properties are properties that the native VFP builder technology will

recognize. These properties will come in handy if you create a projecthook builder class/program.
For more details on setting up a builder see Rick’s session: “Creating and Using Real World
Builders – Made Easy” or get the whitepaper, available from www.WhiteLightComputing.com.

One of the first things that this class does is get a reference to the _vfp.ActiveProject and
stores this in the oProject property. This allows each projecthook to have a reference to the
project it is associated to and allows the projecthook the ability to manipulate the project via the
Project object methods and properties. Similarly, the project file name is stored in the
cProjectName property.

Hooking the projecthook
The rest of the properties and methods are used to extend the projecthook with other hook

objects. What is a hook object? It is an object that is based on the Hook design pattern. I

recommend that you read Steven Blacks article “Design Pattern: Hook Operations” (found at
http://www.stevenblack.com/PTN-Hook%20Operations.asp). The basic concept of the Hook
design pattern is to provide future flexibility and functionality to a class or code without changing
the base code. In the case of this projecthook, it allows you to provide additional functionality to
the projecthook without changing the projecthook.

How is this accomplished? Each of the event methods in the base projecthook has a call
similar to this:

* Hook into additional code provided in extension object(s).
FOR lnIndex = 1 TO this.nHooks
 IF NOT ISNULL(this.aHook[lnIndex,1])
 llHookMethod = PEMSTATUS(this.aHook[lnIndex,1], "QueryAddFile", 5)

 IF llHookMethod
 this.aHook[lnIndex,1].QueryAddFile(tcFileName)
 ENDIF
 ENDIF
ENDFOR

What this does is check to see if there is a hook object registered in the aHook[] collection
(array). If there is a hook object registered (instantiated), a check is made to see if that object
has a method by the same name. If it does, it calls the method. If it does not, it does not have
any code to execute and moves on to the next hook object. In essence, each time an event
occurs when we use the Project Manager, all the code in identical methods in each of the hook
objects are run as well. This is how you can extend the functionality if the base projecthook
without changing the code in each of the methods or subclass the projecthook and override the
individual methods.

Hopefully an example will make this clear. The phkBase hook is assigned to a project and the
project is opened. Two hook classes are registered (the registration process is discussed later) to
the phkBase projecthook and are object references in aHook[1,1] and aHook[2,1]. The first class
backs up forms, classes, reports and menus when the files are modified. The second class
creates and audit trail record in a table each time a file is run, modified, added, or deleted. Both
hook classes have code in the QueryModifyFile method. When the developer selects a file to be
modified the projecthook QueryModifyFile event is triggered and the method is run. This method
loops through the aHook[] collection and first runs the QueryModifyFile of the backup hook which
backs up the metadata files, then calls the second hook class which writes out a record in the
audit table. No other methods are run in either class since they were not triggered by the event
method in the projecthook.

How do I create a hook object?
I have included many examples of the hook object in the CProjectHook5 class library. What I
recommend is subclassing the cusHookBase class (which is what I have done for my examples).
This class already has identical methods of the projecthook event methods and some base error
handling. At this point you add code to the methods you want to react to and save the class.

Table 3 – Hook methods and how you might want to use each (to see when these event methods
are called in projecthook, see the section earlier called “ProjectHook Class”.

Method Why
Activate You might want code to execute each time the Project Manager gains

focus. One example is to change the path to the current project path or
set the field mapping to the classes specific to this project.

AfterBuild] You might want to inform the team that the latest test build is complete
and ready for testing.

BeforeBuild You might want to check in all files or set the read only files to be
read/write so each of the files can be recompiled.

Deactivate You would write code that responds to the Project Manager losing focus.

Method Why
Destroy You might want to clean up temporary files or close specific tables each

time the project is closed.
Init This method is only executed when the hook object is instantiated so this

is where you might have code that sets up the hook to perform
operations a specific way, or toggles features based on the environment.

QueryAddFile You can stop files from being added or add other files when a specific
file is added.

QueryModifyFile You can back up files before they are edited, or refuse to edit the files
based on security scheme you can develop.

QueryNewFile You can determine if the file should be added by extension (say you do
not want bitmap file, but JPGs are ok), make sure files from a specific
directory are not added, or mark specific files excluded (say reports are
not marked included in your executable architecture).

QueryRemoveFile You can stop files from being removed, or remove other files based on
the removal of certain files.

QueryRunFile You can determine if a file can be run. Some frameworks do not have a
“standalone mode” for forms, so you might want to save yourself from
running forms that cannot run alone, or preset the environment so that a
form can run standalone.

How do I register the hook objects?
There are two ways to register a hook object that are built into the architecture. The first
mechanism is a carry over from the previous incarnation of our projecthook. The second
mechanism is a far more flexible architecture.

If you only have one hook class or a hook class that you want used by all your projecthook
subclasses, you can set the properties cHookClass, cHookClassLib, cHookClassDescription, and
cHookIndexName (see Table 4 for a complete description of the properties). If this hook class is
defined it is the first hook instantiated in the aHook[] collection. You can use this in addition of
the second mechanism if you like. The projecthook will call the InstanceOneHookObject method.
This method is used internally to instance and register each of the hook objects used in
conjunction with the projecthook. So set the properties appropriately, and open the project. The
projecthook will have one hook object registered and available for use.

The second method is a bit more complicated, but far more flexible and allows developers to
hook in as many hook objects as they have memory (up to the limitation of the maximum array
size). The manual way to register the hook objects is to call the InstanceOneHookObject method.
It can be called externally with the following code:

_vfp.ActiveProject.ProjectHook.InstanceOneHookObject(<hook class> or <hook obj
reference>, ;
 <hook classlib>, ;
 <hook description>, ;
 <hook index name>
 <hook sequence number>)

The first parameter is either a class name or an object reference to an already instantiated
object. If the parameter is a reference it is registered, if it is a class name it is used in
conjunction with the class library name to instantiate the class and register it. The description is
saved to the aHook[] collection. This can be used to display information to the developer, for
messagebox captions, etc. The sequence number is used to order the hooks. The order is used
the next time the classes are instantiated when the project is opened. The aHook[] collection
currently has 6 columns. See Table 4 for a full description of each column.

Table 4 – Hook methods and how you might want to use each (to see when these event methods
are called in projecthook, see the section earlier called “ProjectHook Class”.

aHook Column Description

aHook Column Description
1 This is the object reference to the hook class. If .NULL., the hook class did not

instantiate properly and you will want to check out the aErrorDetails[] collection to
see what error was trapped during the instantiation.

2 This is the description that was passed in as the third parameter to the
InstanceOneHookObject method.

3 This is the index name. You can call the GetHookReference method and pass in
the value stored in this column. You will get a reference to the object (the same
reference as the one in the first column of this collection) returned.

4 This is the class name used to create the hook object. It is the first parameter
passed to the InstanceOneHookObject method or is extrapolated from the class
using the Class property of the object passed in as the first parameter.

5 This is the class library file of the class used to create the hook object. If the first
parameter passed to the InstanceOneHookObject method is a class, then the
second parameter is stored in this column. If an object is passed in the first
parameter, it is extrapolated from the object using the ClassLibrary property.

6 This is the sequence number which orders when the hook object is instantiated. It
might be important that hook A is instanced before hook B. This setting allows you
to order which classes are instanced before others. It is set based on the fifth
parameter to the InstanceOneHookObject method.

So the question begs, will I have to call the InstanceOneHookObject method each time I

open a project and want my extended functionality? The answer is yes, but do not worry, the
registered classes are automatically instantiated via the InstanceOneHookObject the next time
the project is opened and the projecthook is instantiated. How? Magic!

The registered hook objects are stored in the project file. I have taken advantage of the User
field in the header record. In this field I store the information in the aHook[] collection so that
the next time the project is opened I can instantiate the hook objects in the order specified by
the sequence number (column 6). This information is stored in the User column of the project in
XML. Here is an example:

Listing 1 – This is the XML found in a project User field in the header record for a project using
the WLC ProjectHook and associated hook classes.

///WLCProjectHook Header///<?xml version = "1.0" encoding="Windows-1252"
standalone="yes"?>
<VFPData>
 <xsd:schema id="VFPData" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="VFPData" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="curmainthooks" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="chookclass">
 <xsd:simpleType>
 <xsd:restriction
base="xsd:string">
 <xsd:maxLength
value="50"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="chookclasslib">
 <xsd:simpleType>
 <xsd:restriction
base="xsd:string">
 <xsd:maxLength
value="250"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name="chookclassdescription">
 <xsd:simpleType>
 <xsd:restriction
base="xsd:string">
 <xsd:maxLength
value="250"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="chookindexname">
 <xsd:simpleType>
 <xsd:restriction
base="xsd:string">
 <xsd:maxLength
value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="nhooksequence"
type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 <xsd:anyAttribute namespace="http://www.w3.org/XML/1998/namespace"
processContents="lax"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <curmainthooks>
 <chookclass>cushookcleanreports</chookclass>

 <chookclasslib>d:\devvfp8apps\devtools\projecthook\cprojecthook5.vcx</chookclasslib>
 <chookclassdescription>Clean out printer info in reports</chookclassdescription>
 <chookindexname>CleanReports</chookindexname>
 <nhooksequence>1</nhooksequence>
 </curmainthooks>
 <curmainthooks>
 <chookclass>cushookaddstonefieldpathtopath</chookclass>

 <chookclasslib>d:\devvfp8apps\devtools\projecthook\cprojecthook5.vcx</chookclasslib>
 <chookclassdescription>SF folders in path</chookclassdescription>
 <chookindexname>SFPath</chookindexname>
 <nhooksequence>1</nhooksequence>
 </curmainthooks>
 <curmainthooks>
 <chookclass>cushookaudit</chookclass>

 <chookclasslib>d:\devvfp8apps\devtools\projecthook\cprojecthook5.vcx</chookclasslib>
 <chookclassdescription>Project Auditing</chookclassdescription>
 <chookindexname>Audit</chookindexname>
 <nhooksequence>3</nhooksequence>
 </curmainthooks>
 <curmainthooks>
 <chookclass>cushookmetabackups</chookclass>

 <chookclasslib>d:\devvfp8apps\devtools\projecthook\cprojecthook5.vcx</chookclasslib>
 <chookclassdescription>Metadata Backup</chookclassdescription>
 <chookindexname>G2MetaBackup</chookindexname>
 <nhooksequence>4</nhooksequence>
 </curmainthooks>
 <curmainthooks>
 <chookclass>cushookfieldmapping</chookclass>

 <chookclasslib>d:\devvfp8apps\devtools\projecthook\cprojecthook5.vcx</chookclasslib>
 <chookclassdescription>Field Mapping</chookclassdescription>
 <chookindexname>Field Mapping Here</chookindexname>
 <nhooksequence>4</nhooksequence>
 </curmainthooks>
 <curmainthooks>
 <chookclass>cushookaddvfppathtopath</chookclass>

 <chookclasslib>d:\devvfp8apps\devtools\projecthook\cprojecthook5.vcx</chookclasslib>
 <chookclassdescription>VFP Paths</chookclassdescription>
 <chookindexname>VFPPath</chookindexname>
 <nhooksequence>7</nhooksequence>
 </curmainthooks>
</VFPData>
\\\WLCProjectHook Footer

There are several methods (and other classes like cusBlockParse) that are used to store and
extract the XML from the User column in the first record of the project (header record). I chose
to use the project file to avoid any need for external tables and the deployment headaches that
this can cause. You may have noticed that there are header and footer strings that are similar in
concept to the Referential Integrity stored procedures that are generated by the RI Builder. This
is used to parse out the classes for the projecthook and will play with other utilities that might
leverage this same field in the project file.

So you should only need to register your hook class once for each project. If you need to
delete a hook you could edit the XML in the User field. You could use XMLTOCURSOR() and
CURSORTOXML() like the projecthook does, but that sounds like a little more work than I would
want to do manually. Not much fun right? Check out the next section for a user interface to the
registration process.

How do I register the hook objects without calling the
InstanceOneHookObject method?
Based on the fact that deep down I am lazy and that the thought of manually editing the XML
just is not fun, I created a form to manipulate the hook registration. This is handled via the
frmHookMaintenance form class in the CProjectHook5.vcx.

Figure 2 – The WLC ProjectHook Hook Maintenance form provides a user interface to the hook
registration process.

This is a modal form and can be called programmatically using the following code:

loHookMaintenanceForm = NEWOBJECT(“frmHookMaintenance”, “CProjectHook5.vcx”)

loHookMaintenanceForm.Show(1)

You can also use the WLC Project Toolbar which has a button on it to call this form
automatically. If a project is not open the form does not run. This form provides a completely
buffered editor to add and delete classes. You can use the ellipses button to pick a class which
fills in the class and class library textboxes. Saving the hooks stores the needed XML into the
project file. You have to close and open the project to have the new hook objects instantiated
and/or have them instantiated in their new sequence order. I have found this easy to set up the
hooks and welcome your feedback.

Test projecthooks
Example: phkTestVFPPems and phkTestHooksVFPPems (CProjectHook5.vcx)
There are two test projecthook classes in the library. The first is phkTestVFPPems. This class’
purpose in life was to test out the property, events and methods provided by VFP. We used this
class as part of the beta cycle to verify we were getting what Microsoft was advertising. There
are no additional methods or properties. There is code in each of the VFP Event Methods that
fires a message using the following code:

this.DeveloperMessage(PROGRAM())

The cDefaultMessageType property is set to “W” so when you run this code you get a WAIT
WINDOW any time a native projecthook event is fired when some action is performed from the
Project Manager. Not really useful, but it serves its purpose to test out the different events.

The second test project hook is named phkTestHooksVFPPems (subclassed from phkBase). It
is designed to test that the extension hook classes concept in the phkBase class work. When you
open a project that includes this projecthook and interact with the files you will see several
messages displayed on the VFP screen.

Figure 3 – The phkTestHooksVFPPems class uses the linHookTest class to extend the base
projecthook to display a message on the VFP screen each time a native projecthook event is
called when using the Project Manager.

When you look at the projecthook you will notice that only a couple properties and one
method are changed (see Figure 4).

Figure 4 – The phkTestHooksVFPPems class only sets the cHookClass to linHookTest, the
cHookDescription (optional) to hook all the functionality provided by the linHookTest class.

The zzAbout method does not provide any functionality, only documentation. The cVersion
property is just an indicator to the version in case new versions appear at a later time. The
superclass (phkBase) does all the work. It instantiates the linTestHook, saves a reference in the
aHook[] collection, and calls the hook via the phkBase architecture for each of the VFP base
projecthook events.

The linTestHook class has some straightforward code in each of the event methods to
message the screen with information about the call. Here is an example using the Activate
method:

lcMessage = "Activate notified hook - " + ;
 LOWER(this.Class) + " (" + LOWER(this.ClassLibrary) + ") " + ;
 "-- called from " + LOWER(PROGRAM(PROGRAM(-1)-1))

this.OutputMessage(lcMessage)

You might review the object and the code and ask a couple of questions. The first I suspect
is: why a line object? This can be any type of object, including a projecthook. The only key is that
you create method names exactly like the event method names in the projecthook. The base
projecthook checks the hook object (in this case called linTestHook) and checks to see if the
method exists and calls it with the same parameters as are passed into the projecthook event
method. Further examples can be reviewed in this class library. I used a custom class to base
several feature extensions for the development projecthook (described later in this whitepaper).

NOTE: The first time you edit any hook method that has the same name as the native
projecthook event method, you will get the LPARAMETERS statement. This is interesting
behavior that is not documented as far as I can tell.

The second question I suspect is why the different OutputMessage method when one exists
in the base projecthook. The reason is simple. If you pass along a reference of the projecthook
to a hook class, and save a reference to this projecthook, the projecthook will not release itself
when the project is closed. Thus I added the OutputMessage method to get the displayed text.

Development projecthook
Example: phkDevelopment (CProjectHook5.vcx)
The development projecthook is called phkDevelopment. It is the real meat and potatoes of the
projecthook library. This is the basis for all our project specific projecthooks. This class provides
some key functionality that many VFP developers have desired to be added to the native IDE.
This is the true beauty of the projecthook extension. It allows us to add functionality to the
development environment without having to wait for Microsoft to move our request to the top of
the priority list. The concept of enhancing the development environment makes VFP shine over
other developer tools. Some of the features we implemented in phkDevelopment:

• Field Mapping Utility (cusHookFieldMapping)
• Cleaning out hard coded printer information in reports (cusHookCleanReports)
• Project Audit (activity tracking, cusHookAudit)
• File Backup capability (cusHookMetaBackups)
• Bounce Microsoft Internet Information Server (IIS) to release COM objects

(cusHookBounceIIS)
• Displaying compiler/build messages to Status Bar or WAIT WINDOW (phkDevelopment)
• Instantiating toolbar with button to call WLC Project Builder and other tools

(phkDevelopment)
• Changing the default directory to the project directory (phkDevelopment)
• Clear the VFP desktop (cusHookClearDesktop)
• Copy executable to a test directory (cusHookCopyExecutable)
• Adjusting the path custom to a project path (cusHookAddProjectPathToPath)
• Adjusting path to include the VFP home directory (cusHookAddVFPPathToPath)
• Adjusting the path to include the Stonefield tool directories

(cusHookAddStonefieldPathToPath)

Each of these major features will be discussed later in this whitepaper.

Table 5 – Methods added to our development projecthook with a short description of their usage

Method Description
ChangeToProjectDirectory This method changes the default directory to the project's home

directory.
CreateProjectToolbar This method instantiates the Project Tool toolbar if it is the first project

opened and the lUseProjectToolbar property is set to true.
ReleaseProjectToolbar This method is called when the optional project toolbar needs to be

release. It is released automatically when the projecthook is destoyed as
the project is closed.

ReleaseRegistry This method is called when the optional registry object needs to be
release. It is released automatically when the projecthook is destoyed as
the project is closed.

Table 6 – Properties added to our development projecthook with a short description of their
usage

Property Description
cBuildMessageSetting This property indicates what type of messaging is used during a build.

Valid options are (W)ait and (S)tatusbar.
cOldNotify This property contains the old SET('NOTIFY') for reset later.
cOldStatusbar This property contains the old SET('STATUS BAR') for reset later.
cOldTalk This property contains the old SET('TALK') for reset later.
cOldTalkWin This property contains the old SET('TALK,1') for reset later.
cProjectTbScreenProperty This property is the property name that the Project Tool toolbar is

instantiated as on the _screen object.
cProjectTooltbClass This property holds the name of the class that is the Project Tool toolbar.
cProjectTooltbClassLib This property holds the name of the class library that the Project Tool

toolbar resides.
lUseProjectToolbar This property indicates if the Project Tool toolbar is instantiate when the

project is open.
oRegistry This property contains an object reference to the Registry Manipulation

object.

How to have the projecthook set the current directory
Example: phkDevelopment (CProjectHook5.vcx)
Before the development projecthook, every time we opened a new project we were forced to
manually change the default VFP directory to the project’s directory. This is done so individual
forms can be run standalone and the SET PATH is correctly finding all the files necessary to run
the features we are developing. I typically hits a half dozen projects every day and this can
become quite tedious.

Many developers have created a program to set the path, the current directory and other
environmental settings before opening the project with a MODIFY PROJECT …NOWAIT. This is no
longer needed since the projecthook can run the same type of code each time the project is
opened. So what are the advantages between a program that does this and the projecthook
instantiating? There are a number of advantages. First we don’t need a custom program
duplicated for each project since the code is written once in the highest-level projecthook class.
Maintenance is minimized by the object-oriented design of the class. Next, there is no hardcoding
paths in the program. The projecthook uses the project directory that is stored already in the
project. Thirdly, I can use the VFP IDE to open projects and not worry about the entire list of
project opening programs being in the existing VFP path and making sure we open the correct
project. This is a problem since most developers name the opening project program identically
across projects. So what directory are we in? Which project is going to open when I run
SetPath.prg? With the projecthook designated for the project, we just hit the File menu and pick
one of the last projects I worked on or jump to the Command Window and execute the MODIFY
PROJECT line of code that is already there. Simple.

So what code is needed to have this advantage? Here are two methods extracted out of the
phkDevelopment class which are called from the ProjectActivate method:

* phkDevelopment.ChangeToProjectDirectory()
* Set the default directory to the project's home
* directory so the generic pathing works
* ie SET PATH TO data, forms, classes, graphics
IF TYPE("this.oProject") = "O" AND !ISNULL(this.oProject)
 IF !EMPTY(this.oProject.HomeDir)
 CD (this.oProject.HomeDir)
 ELSE
 this.DeveloperMessage("Project directory setting is empty...", .T.)
 ENDIF
ELSE
 * This should never happen, unless you manually
 * CREATEOBJECT() the class without a project.
 THIS.DeveloperMessage("Project reference not available", .T.)
ENDIF

* Hook into additional code provided in extension object(s).
FOR lnIndex = 1 TO this.nHooks
 IF NOT ISNULL(this.aHook[lnIndex, 1])
 llHookMethod = PEMSTATUS(this.aHook[lnIndex, 1], "ChangeToProjectDirectory", 5)

 IF llHookMethod
 this.aHook[lnIndex, 1].ChangeToProjectDirectory()
 ENDIF
 ENDIF
ENDFOR

RETURN

There is one drawback to this method if you are using VFP 6. Since there is no Activate
method for the projecthook that we can hook into, this code is only run when we open the
project. The RAS Project Builder v3 (a tool not discussed later in this chapter, but available on
www.rickschummer.com) has a workaround for this issue. This is not an issue with VFP 7 and
later.

How to create a “Project Tools” toolbar
Example: phkDevelopment (CProjectHook5.vcx)
One of the benefits of using a projecthook is the ability to generate a project tools toolbar. I have
used a toolbar that had only one button to run the WLC ProjectBuilder in previous versions of this
tool. This release expands the functionality of the toolbar.

Figure 5 – The WLC Project Tools toolbar is optionally instantiated when a project is opened.

The discussion of the toolbar functionality is discussed later in this whitepaper. The
CreateProjectToolbar method will create the toolbar if the lUseProjectToolbar property is set to
.T.. It will instantiate the class specified in the cProjectTooltbClass property that resides in the
cProjectTooltbClassLib property. The class library can remain empty as long as the toolbar is in
the same class library as the projecthook. The properties allow you to specify your own toolbar.
The toolbar is instantiate to a property added to the _screen object. You can determine the name
of the property added by setting the cProjectTbScreenProperty property. The property is added
dynamically and the toolbar is created.

How to control where build messages are displayed
Example: phkDevelopment (CProjectHook5.vcx)
The standard location for the build messages are displayed when building a project is on the
status bar. I prefer to have them in a wait window because it is easier to read the file names as
they are displayed. The projecthook allows you to determine where the messages are displayed.
This is handled in the BeforeBuild and AfterBuild methods, and can be toggled using the
cBuildMessageSetting property. It defaults to a WAIT WINDOW.

Extending the projecthook with Hook Objects
The previous version of the WLC ProjectHook was known as the RAS ProjectHook. The RAS
ProjectHook was a monolithic projecthook in the sense that all the functionality was built into one
class in the class library. The fact remains that not all developers needed all the functionality for
every project they are working on. So when it came time to redesign and update the WLC
ProjectHook, I decided to split out all the functionality into separate classes and use the Hook
pattern discussed earlier in this whitepaper to provide for the rest of the functionality. These will
be discussed in separate sections at this time.

How set paths to project directories
Example: cusHookAddProjectPathToPath/phkDevelopment (CProjectHook5.vcx)
One almost automatic feature we like when a project is opened and later receives focus is to
have the VFP path to change to all the directories found in the project. This is accomplished
using the Activate method hook found in the cusHookAddProjectPathToPath class. This class
looks at all the unique paths found by looking at all the files in the project.

At the same time I update the SET CLASSLIB for each class library in the project, SET
PROCEDURE TO for each program, and SET LIBRARY TO for each API file (FLL). Why do I do this and
why might it be important. I like to run the main program for the project, not build every time I
want to test a change. If I have the pathing set up correctly I can find all the necessary files in
the project. This saves time building each time.

How set paths to VFP directories
Example: cusHookAddProjectPathToPath/phkDevelopment (CProjectHook5.vcx)
One almost automatic feature we like when a project is opened and later receives focus is to
have the VFP path to include the VFP HOME() directory. This is accomplished using the Activate
method hook found in the cusHookAddProjectPathToPath class. This class adds the HOME()
directory if it is not on the SET PATH.

Why do I do this and why might it be important. This saves me time each time I want to run
a tool that is loaded in this folder. It saves me the time to switch to this directory and hunt down
the program, APP, or EXE.

How set paths to Stonefield directories
Example: cusHookAddProjectPathToPath/phkDevelopment (CProjectHook5.vcx)
Another almost automatic feature we like when a project is opened and later receives focus is to
have the path to include the the various directories that we have the Stonefield Group’s tools
loaded. This is accomplished using the Activate method hook found in the
cusHookAddProjectPathToPath class. This class adds the directories for the Stonefield Database
Toolkit, SFQuery, SFReports, and the Stonefield common files folder if they are not on the SET
PATH.

Why do I do this and why might it be important. This saves me time each time I want to run
one of the tools that are loaded in these folders. It saves me the time to switch to the specific
directory and hunt down the APP or classes.

How to programmatically control the VFP IntelliDrop settings
Example: cusHookFieldMapping/phkDevelopment (CProjectHook5.vcx)
Visual FoxPro 5.0 introduced the IntelliDrop feature native to the development environment.
When building forms and classes, you can drag and drop items from the dataenvironment, a
project, or Database Designer and when you drop it in the designer, the specified class is used
when creating the object. The big benefit to this is that you get to specify the classes instead of
using the default VFP base classes. The IntelliDrop capability is managed via the Tool|Options
dialog on the Field Mapping page. These settings are retained in the Windows Registry. You
immediately see the benefits of this functionality. It is yet one more way to customize the
development environment.

There are two big drawbacks of this implementation. The first is one that is immediately
realized if you use different classes in different projects. This could be due to the fact that you
have subclassed framework classes for each project, or it could be that different clients have
source code from different frameworks.

The second is the fact that these settings are stored in the registry, which is machine
specific. If you have multiple developers working on the same project, each has to go through
the tedious process of setting the Field Mapping settings for the project. This is complicated by
the fact that most developers are working on multiple projects. If you are having problems with a
machine and want to jump over to another machine on the network, you have to go through and
reset those settings for that machine.

This can be more than an aggravation. Fortunately, there is a solution that can be developed
with a program or a projecthook. We can store the settings for each project in a table and load
the registry with these values.

Table 7 – WLCFieldMapping.dbf free table which stores the Field Mapping information used in
the IntelliDrop Manager portion of the cusHookFieldMapping class used by the WLC ProjectHook.

Field Name Type Size Description
1 Framework C 10 This is the framework used by the project.
2 Config C 20 This is the configuration name. We fill this in with a reference that is tied

to represent the project.

3 Type C 20 This is the VFP base class object name.
4 ClassNam e C 50 This is the class name that is set in the registry for the VFP base class in

the Field Mapping section.
5 ClassLoc C 254 This is the class library (with fullpath) where the class designated in the

ClassName column resides.

The first time I saw VFP 6.0 and the projecthooks, I immediately saw the use of the

projecthook to update the registry with the information mapped in the WLCFieldMapping table.
Since the projecthook is instantiated when the Project Manager gains focus, we could hook into
the activate process and run code to map classes to the registry. The code for this is found in
Listing 2.

Listing 2 – This code found in the Set method of the cusHookFieldMapping hook class. This
code maps the IntelliDrop settings to the Windows’ Registry based on the grouping selected.

* Registry roots (ripped off from VFP\ffc\Registry.h)
#DEFINE HKEY_CLASSES_ROOT -2147483648 && BITSET(0,31)
#DEFINE HKEY_CURRENT_USER -2147483647 && BITSET(0,31)+1
#DEFINE HKEY_LOCAL_MACHINE -2147483646 && BITSET(0,31)+2
#DEFINE HKEY_USERS -2147483645 && BITSET(0,31)+3

LOCAL lcIntelliDropKey, ; && VFP Registry Options Key for Intellidrop
 lnOldSelect, ; && Save the old workarea
 loRegistry

* So access method only fires once
loRegistry = this.oRegistry

* Only process the registry entries if Registry object instantiated
IF NOT ISNULL(loRegistry)
 * Build the first part of the registry key for Intellidrop
 lcIntelliDropKey = "Software\Microsoft\VisualFoxPro\" + ;
 _VFP.VERSION +;
 "\Options\Intellidrop\FieldTypes\"

 lnOldSelect = SELECT()

 * Get all the class settings for the project
 SELECT * ;
 FROM (this.cTableAlias) ;
 WHERE Config = ALLTRIM(this.cCategory) ;
 INTO CURSOR curSetReg

 lnRecords = _TALLY

 IF lnRecords = 0
 MESSAGEBOX("No field mappping class records to process for " + ;
 ALLTRIM(this.cCategory), ;
 0+48, ;
 _screen.Caption, 5)
 this.lActive = .F.
 ELSE
 * Update the Registry
 SCAN
 * This is the Visual Class Library setting
 loRegistry.SetRegKey("ClassLocation", ALLTRIM(curSetReg.ClassLoc),;
 lcIntelliDropKey + ALLTRIM(curSetReg.Type),;
 HKEY_CURRENT_USER)
 * This is the actual class set for the base class
 loRegistry.SetRegKey("ClassName", ALLTRIM(curSetReg.ClassName),;
 lcIntelliDropKey + ALLTRIM(curSetReg.Type),;
 HKEY_CURRENT_USER)
 ENDSCAN
 ENDIF

 * Close the temp cursor
 USE IN (SELECT("curSetReg"))
 SELECT (lnOldSelect)
ELSE
 WAIT WINDOW "Registry object is not instantiated for fieldmapping class, " + ;
 "please make sure VFP Registry FFC is avaliable" ;
 NOWAIT
 this.lActive = .F.
ENDIF

RETURN

Frankly this feature can save a tremendous amount of time if you are constantly changing
projects like I do. If you work on the same project all the time or only use one set of base classes
for all your projects, this part of the projecthook will be pretty much useless. You can turn this
feature off by setting the lActive property to .F. or you can make sure to not include this hook
with the projecthook.

How to track what is done within the Project Manager
Example: cusHookAudit/phkDevelopment (CProjectHook5.vcx)
Have you ever wondered how many times you altered a specific file or who was the last person
who touched the critical class library? There are plenty of options when it comes to Source
Control that will give you these statistics. VFP does work with source control providers that
conform to the Source Control Application Programmer Interface (API). But what if you don’t
have these controls implemented in your office? What if you wanted to know how many times
you opened a project or built the code? What can you do? One option is to implement what I call
the "poor developer’s project audit trail".

There are a number of projecthook event methods that execute when Project Manager is
used. Each of these event methods has a call in it to the Update method in the cusHookAudit
class. Here is the code in the cusHookAudit QueryModifyFile method:

LPARAMETERS toFile, tcClassName

this.Update("Modified File", toFile.Name + ;
 IIF(EMPTY(tcClassName),""," (" + tcClassName + ")"))
RETURN

It is important to note that if this feature is not desired, you just make sure not to hook this
class in to the projecthook.

Listing 3 – This code is found in the Update method of the phkDevelopment projecthook and
inserts a row into a VFP free table specified by the cAlias property

LPARAMETER tcActivity, tcParameter

IF PCOUNT() < 2 OR VARTYPE(tcParameter) != "C"
 tcParameter = SPACE(0)
ENDIF

* Always check to see if the table is open because of the possiblility
* of it being closed via a CLOSE TABLES or CLOSE DATA from the
* Command Window
IF NOT USED(this.cAlias)
 this.Open()
ENDIF

* See the ProjectAuditTableCreate() method for field list
INSERT INTO (this.cAlias) ;
 (mProjPath, ;
 cProjFile, ;
 cActivity, ;
 mParameter, ;

 cSessionId, ;
 tUpdated) ;
 VALUES (LOWER(JUSTPATH(this.cProjectName)), ;
 JUSTFNAME(this.cProjectName), ;
 tcActivity, ;
 tcParameter, ;
 this.cSessionId, ;
 DATETIME())

RETURN

Now that all the event hooks are filling up the table, what can you do with them? Even if
there is source code control in place, we like to see when the file was modified most recently on
the server:

SELECT cProjFile AS cName, ;
 PADR(mFileName,60) AS cFile, ;
 cSessionId, ;
 MAX(tUpdated) ;
 FROM projectaudit ;
 WHERE cActivity = "Modified" ;
 AND "program1.prg" $ mFileName ;
 GROUP BY cProjFile, cFile ;
 INTO CURSOR curTemp

We can also see how many times a project was opened:

SELECT cProjFile AS cName, ;
 COUNT(*) AS nCount ;
 FROM projectaudit ;
 WHERE cActivity = "Opened" ;
 GROUP BY cProjFile ;
 INTO CURSOR curTemp

These are trivial examples of course, but the details are there in the table for your archival
and developing SQL code is what we do for a living, so enjoy.

How to generate automatic backups of metadata
Example: cusHookMetadataBackups/phkDevelopment (CProjectHook5 .vcx)
Visual FoxPro generates a backup file when a developer modifies a program file. The BAK file is
generated when the modified program is saved. Not all VFP objects get this safety feature when
modified. So is a developer left hanging? Obviously not, since we are writing about this topic in
this chapter. The cusHookMetadataBackups class example leverages the QueryModifyFile method
to copy the metadata files before proceeding to the designer of choice. It should be noted that
the file is copied even if the developer saves no changes from the designer.

The code in Listing 4 was grabbed off the FoxWiki, which is located at www.Fox.Wikis.com.
VFP guru Jim Booth posted it on this incredible knowledge base. This routine copies all the
different metadata files to a separate file named the same but with a different extension. Just
like the limitation of the program backup file, only one level of backup is retained.

Listing 4 – This code is found in the QueryModifyFile method of the cusHookMetadataBackup
hook class. This code copies the different metadata files to a backup file when they are modifed.

LPARAMETERS toFile, tcClassName

LOCAL lcFile && File metadata table
LOCAL lcFpt && Associated metadata memo file
LOCAL lcBak && Name of the backup for the table
LOCAL lcFptBak && Name of the backuo for the memo
LOCAL lcOldSafety && Save the setting to reset Safety

lcOldSafety = SET("SAFETY")

lcFile = UPPER(toFile.Name)
lcBak = SUBSTRC(lcFile, 1, LENC(lcFile)-3) + "SCT"

SET SAFETY OFF

* No need to handle the PRGs, DBFs since they get
* backed up natively
DO CASE
 CASE UPPER(JUSTEXT(lcFile)) == "SCX"
 lcFpt = FORCEEXT(lcFile, "sct")
 lcBak = FORCEEXT(lcFile, "sxk")
 lcFptBak = FORCEEXT(lcFile, "stk")

 CASE UPPER(JUSTEXT(lcFile)) == "VCX"
 lcFpt = FORCEEXT(lcFile, "vct")
 lcBak = FORCEEXT(lcFile, "vxk")
 lcFptBak = FORCEEXT(lcFile, "vtk")

 CASE UPPER(JUSTEXT(lcFile)) == "FRX"
 lcFpt = FORCEEXT(lcFile, "frt")
 lcBak = FORCEEXT(lcFile, "fxk")
 lcFptBak = FORCEEXT(lcFile, "ftk")

 CASE UPPER(JUSTEXT(lcFile)) == "MNX"
 lcFpt = FORCEEXT(lcFile, "mnt")
 lcBak = FORCEEXT(lcFile, "mxk")
 lcFptBak = FORCEEXT(lcFile, "mtk")

 CASE UPPER(JUSTEXT(lcFile)) == "LBX"
 lcFpt = FORCEEXT(lcFile, "lbt")
 lcBak = FORCEEXT(lcFile, "lxk")
 lcFptBak = FORCEEXT(lcFile, "ltk")

 OTHERWISE
 SET SAFETY &lcOldSafety
 RETURN
ENDCASE

IF FILE(lcBak)
 ERASE FILE &lcBak
ENDIF

COPY FILE (lcFile) TO (lcBak)

IF NOT EMPTY(lcFpt)
 IF FILE(lcFptBak)
 ERASE FILE &lcFptBak
 ENDIF

 COPY FILE (lcFpt) TO (lcFptBak)
ENDIF

SET SAFETY &lcOldSafety

RETURN

Now your forms, class libraries, reports, labels, and menus will receive the same safe
treatment as your programs.

How to remove printer driver details from a report
Example: cusHookCleanReports/phkDevelopment (CProjectHook5.vcx)
There is much discussion in the Fox Community and about the printer driver information getting
embedded in the report metadata files (FRX/FRT). If you have not heard of this problem, the
printer driver information for the current printer driver gets stored in the report when you have a
difference between the VFP default report and the default printer for Windows and you edit any
of the Page Setup information for the report.

The problem surfaces when you move your application into the customer environment and
they go to print the report to a printer different from yours. It cause all sorts of problems and the
reports do not get printed.

There are several solutions available. Most are written as a program that scans the project
file (PJX), opens up the report metadata and then cleans out the Tag and Tag2 columns of the
first record. Steve Sawyer passed along one of the better programs that perform this service. I
have incorporated this code, along with Steve’s enhancements and some of my own, to
selectively modify certain information in the Expr column of the first record in the report
metadata.

The code to perform the scrubbing is located in the Clean method in the projecthook, which
is called by the BeforeBuild method. The BeforeBuild scans through the Project object Files
collection looking for report files. The Clean code cleans the printer specifics in one report file.

There are several settings available via the cProcessSetting property. "Clean" will cause the
scrubber to do the work, "View" will log the issues to a text file and optionally display them after
processing all the report, and "Skip" will bypass the process all together.

LPARAMETERS tcFrx2Chk, tcAction

LOCAL llChanged, ;
 llError, ;
 lcOldOnError, ;
 lcExpr

* Parameter Check
IF VARTYPE(tcAction) # "C" OR EMPTY(tcAction)
 WAIT WINDOW "Report parameter was empty of incorrect data type" NOWAIT
 RETURN
ENDIF

IF VARTYPE(tcAction) # "C"
 tcAction = "View"
ENDIF

IF LOWER(tcAction) == "view"
 this.lDisplayIssues = .T.
ENDIF

IF LOWER(tcAction) == "skip"
 this.lDisplayIssues = .F.
 RETURN
ENDIF

* Move on to the business of the method
WAIT WINDOW PROPER(tcAction) + "ing Report: " + tcFrx2Chk NOWAIT

llChanged = .F.
this.cIssueLog = SPACE(0)

* Check for the report to exist
IF FILE(tcFrx2Chk)
 IF USED("curFrx2Chk")
 USE IN curFrx2Chk
 ENDIF

 llError = .F.
 lcOldOnError = ON("ERROR")
 ON ERROR llError = .T.

 USE (tcFrx2Chk) ALIAS curFrx2Chk EXCLUSIVE

 ON ERROR &lcOldOnError

 IF llError = .T.
 this.AddIssue("Report " + tcFrx2Chk + " is in use by another and could not be
processed.")
 RETURN

 ENDIF
ELSE
 this.AddIssue(tcFrx2Chk + " does not exist.")
 RETURN
ENDIF

* Check if report opened okay (otherwise error handler just
* displayed a message and life moved on).
IF !USED("curFrx2Chk")
 RETURN
ENDIF

IF ISREADONLY()
 this.AddIssue("Report " + tcFrx2Chk + " is opened read only, which means it cannot be
cleaned.")
ELSE
 LOCATE

 * Handle the Expression field
 IF !EMPTY(curFrx2Chk.Expr)
 IF LOWER(tcAction) == "clean"
 lcExpr = curFrx2Chk.Expr

 IF [*DEVICE] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [DEVICE], [*DEVICE])
 ENDIF

 IF [*DRIVER] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [DRIVER], [*DRIVER])
 ENDIF

 IF [*OUTPUT] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [OUTPUT], [*OUTPUT])
 ENDIF

 IF [*DEFAULT] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [DEFAULT], [*DEFAULT])
 ENDIF

 IF [*PRINTQUALITY] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [PRINTQUALITY], [*PRINTQUALITY])
 ENDIF

 IF [*YRESOLUTION] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [YRESOLUTION], [*YRESOLUTION])
 ENDIF

 IF [*TTOPTION] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [TTOPTION], [*TTOPTION])
 ENDIF

 IF [*DUPLEX] $ lcExpr
 * Already commented out
 ELSE
 lcExpr = STRTRAN(lcExpr, [DUPLEX], [*DUPLEX])
 ENDIF

 IF lcExpr # curFrx2Chk.Expr
 REPLACE curFrx2Chk.Expr WITH lcExpr
 this.AddIssue(tcFrx2Chk + " column Expr: cleaned")
 llChanged = .T.
 ENDIF
 ELSE
 this.AddIssue(tcFrx2Chk + " column Expr: " + curFrx2Chk.Expr)
 ENDIF
 ENDIF

 * Handle the Tag field
 IF NOT EMPTY(curFrx2Chk.TAG)
 IF LOWER(tcAction) == "clean"
 REPLACE curFrx2Chk.TAG WITH SPACE(0)
 this.AddIssue(tcFrx2Chk + " column Tag: cleaned")
 llChanged = .T.
 ELSE
 this.AddIssue(tcFrx2Chk + " column Tag: " + curFrx2Chk.Tag)
 ENDIF
 ENDIF

 * Handle the Tag2 field
 IF NOT EMPTY(curFrx2Chk.Tag2)
 IF LOWER(tcAction) == "clean"
 REPLACE curFrx2Chk.Tag2 WITH SPACE(0)
 this.AddIssue(tcFrx2Chk + " column Tag2: cleaned")
 llChanged = .T.
 ELSE
 this.AddIssue(tcFrx2Chk + " column Tag2: " + curFrx2Chk.Tag2)
 ENDIF
 ENDIF

 * Now pack to be sure you don't get memo bloat
 IF LOWER(tcAction) = "clean" AND llChanged = .T.
 PACK
 ENDIF
ENDIF

* Close the report (.frx)
IF USED([curFrx2Chk])
 USE IN (SELECT([curFrx2Chk]))
ENDIF

WAIT CLEAR

RETURN

The code is intelligent to only comment out the problem lines if they have not been
commented out before. This is a marked improvement over the previous version of this tool. This
functionality is also exposed in the WLC Project Builder discussed later in this whitepaper.

How to bounce IIS to rebuild COM objects used by webserver
Example: cusHookBounceIIS/phkDevelopment (CProjectHook5.vcx)
If you have created COM objects that are used in a website that leverages IIS you know the pain
of not being able to re-generate the DLL because the file is in used with the webserver process.
This hook class will bounce IIS in the BeforeBuild method so the build can go smoothly. The code
for this hook class was taken directly from a Microsoft Knowledgebase article written by Trevor
Handcock ("HOW TO: Use a Project Hook to Recycle IIS So VFP COM DLL Can Be Rebuilt",
article: 310901).

How to remove clear the VFP desktop when a project is open
Example: cusHookClearDesktop/phkDevelopment (CProjectHook5.vcx)

This might sound a bit silly, but we wrote a hook object that performs a CLEAR when the project
is open. This cleans the VFP desktop of any text dropped on the desktop during testing. It is one
less thing I have to do when working with a project initially.

How do I implement the WLC ProjectHook?
The WLC ProjectHook is implemented in the same fashion as any other projecthook via the
Project Info dialog. That is not what this section is all about, rather the details of implementation
from a class library management perspective.

What I recommend is subclassing the entire class library to your own copy (all the classes),
much in the same manner as you do for a framework. In essence, this tool is a framework for
projecthooks. This way you can download the latest CProjectHook5 class library from
www.WhiteLightComputing.com and www.RickSchummer.com and not worry about overwriting
changes to your classes.

In this class library subclass the phkDevelopment projecthook for each project you create
that you might want to override behavior. There is no reason why each project would need its
own projecthook now that we have re-architected it to use hook classes that are registered for
each project. You can set the projecthook for the project to the phkDevelopment or the
subclassed projecthook that you created.

Table 8 – Classes and the properties recommended for review when implementing the WLC
ProjectHook after subclassing all classes to another class library.

Class Recommended changes
cusHookAddStonefieldPathToPath Change the four Stonefield directories properties to match

your installation.
cusHookAudit Change the cDirectory property to the location you want the

audit file to reside. I recommend a full path. Optionally you
can change the name of the table as well.

cusHookFieldMapping Change the cTableDirectory property to the location you
want the FieldMapping table to reside. I recommend a full
path. Optionally you can change the name of the table as
well.

SfZipUtilsWinZip Change the cZipProgram property to match the location of
you registered copy of WinZip.exe.

The reason I recommend that you subclass all the classes from the CProjectHook5 class

library to your own class library is that some of the default class libraries are not set and will use
the current classlibrary as the default. If the class is not in the class library it will error when the
attempt to instantiate it is made. If you run into any problems please send a message to
support@whitelightcomputing.com or post a message in the White Light Computing Tools
Support section on www.FoxForum.com which is the free support forum that we maintain.

WLC Project Builder
Example: frmProjectBuilder, tbrProjectTools (CProjectHook5.vcx)
The WLC Project Builder (frmProjectBuilder in CProjectHook5) is a combination of the VFP Project
Build dialog, the Build Version dialog and the Project Information dialog. How many times have
you made that last gold production build and find out that you forgot to set Debug Code off in
the Project Information dialog resulting in a 50 megabyte executable on the 500 CDs that were
just cut? This dialog brings all the compiler settings together so you can build the executable with
all the information in front of you at one time.

NOTE – This is an updated tool formerly known as the RAS Project Builder that was initial
created for a chapter example in KiloFox (1001 Things You Wanted to Know About Visual
FoxPro). This tool has been updated to work with the new architecture of the WLC
ProjectHook v4.

It is important to note that there are several features in the WLC Project Builder (see Figure
6) that work in conjunction with the WLC ProjectHook, but it is not required. In fact, there is no
requirement for any projecthook at all. The only requirement is that one project (or more) must
be open.

Features that are not available without the WLC ProjectHook are the Process Project Audit
Trail checkbox, the Clean Printer Information from Reports checkbox and textbox, and the Field
Mapping page on the pageframe. The rest of the options are available for all projects.

So what does this product have to do with the projecthook section of this whitepaper? There
are several code examples inside this tool that demonstrate the project object, the projecthooks,
and the various properties, events and methods associated with them.

Figure 6 – The WLC Project Builder in action for a project not tied to the WLC ProjectHook.

Figure 7 – The WLC Project Builder in action for a project tied to the WLC ProjectHook with both
the Field Mapping and the Clean Reports hook classes available for the projecthook .

There are very few methods in the project object, but this utility leverages both of the
important ones. The first is the project object’s Build method. At first we used the BUILD
command, but there are some features not supported by the command that are supported by the
method. The Build method supports showing the build errors when the build is completed and it
also handles support for regenerating component ids for the different COM server options. The
second method used is the Clean method. This method packs the project metadata file. This
option can be accessed on the VFP Project menu as well.

Several project object properties are accessed and demonstrated through this utility. All the
version information that is sitting on the version page is accessed via the VersionComment,
VersionCompany, VersionCopyright, VersionDescription, VersionLanguage, VersionNumber,
VersionProduct, and VersionTrademarks properties. The ability to set on the Auto Increment
Version is bound to the AutoIncrement property, the Encrypted Executable to the Encrypted
property, and the Debug Code setting to the Debug property. The projecthook name and class
are displayed on the About page and are accessed through the ProjectHookClass and
ProjectHookLibrary properties. Same goes for the Source Code Provider via the SCCProvider
property.

The Development/Production toggle option group is important to talk about as well.
Production option defaults to the build to recompile all files, display errors, and sets up the
reports to be scrubbed of possible development printer information. We determined that these
settings are best for our development environment. The Production setting also does a SET
STRICTDATE TO 1 so there are no ambiguous messages from user date entry in the production
application. The Development setting does the reverse and does a SET STRICTDATE TO 2 so we
are alerted to the Y2K issues that our code may have introduced inadvertently. The

Development/Production toggle settings can be overridden by setting them through the interface
after picking the type of build you want to perform. For instance, if you desire to not show errors
and not clean the reports of possible development printer information for a production build, just
click the checkboxes to reflect your wishes.

We have been successfully using this tool since late 1999. It has naturally gone through
some enhancements via the beta tester’s suggestions. I am making it available to the Fox
Community so others may benefit from this handy utility. It has no warranty of any kind and was
originally developed as a learning tool, but over time it has taken a life of its own like many
developer tools. The source is included in the conference download files.

WLC Project Toolbar
The WLC Project Toolbar is optionally instantiated when the phkDevelopment projecthook (or a
subclass) is instantiated. There are more details on implementing the toolbar in the section “How
to create a “Project Tools” toolbar” earlier in this whitepaper. This section will detail the existing
features.

Figure 8 – The WLC Project Tools toolbar is optionally instantiated when a project is opened.

WLC Project Builder [PB]
This button will execute the WLC Project Builder form. This can optionally be started by running
the following code in the Command Window or from a program.

_screen.AddProperty("__WLCProjectBuilderTest")
_screen.__WLCProjectBuilderTest = NEWOBJECT("frmProjectBuilder", "CProjectHook5.vcx")

IF VARTYPE(__WLCProjectBuilderTest) = "O"
 _screen.__WLCProjectBuilderTest.Show()
ENDIF

You might have to substitute the path in front of the class name on the NEWOBJECT() call
depending on your pathing and other VFP environment settings.

WLC ProjectHook Hook Maintenance [HM]
This button will start the WLC ProjectHook Hook Maintenance form that is detailed in the “How
do I register the hook objects without calling the InstanceOneHookObject method?” section
earlier in this whitepaper.

Stonefield Zip Project Utility [Zip]
Doug Hennig created a fabulous tool that zips up all the files in a project into a Zip file using the
command line utility of WinZip. Since we use it all the time we thought it would be a great idea
to make it easily accessible. With his permission I have added the necessary classes to my class
library and integrated it into the toolbar. Pressing the button will cause all the files to be zipped
up into one ZIP file. The only requirement is that you have a registered copy of WinZip (a US$29
product available from www.Winzip.com).

Figure 9 – This is a ZIP file created with the Stonefield Zip Utilities from the WLC Project Tools
toolbar.

A wait window is displayed when the file is finished being created. The zip file is named the
same as the project file and placed in the same directory as the project. It stores the relative
paths so it can be unzipped safely without losing all the relative pathing that is stored in the
project.

WLC Metadata Pack Utility
The WLC Metadata Pack Utility will PACK all the metadata that has memo fields (forms, visual
class libraries, reports, labels, menus, as well as the project files). You can get the same
functionality individually for forms and classes using the Class Browser and can Pack everything
using the Rebuild All option on the project build. We added this functionality to provide one more
avenue to making out executables smaller.

WLC ProjectHook Error Listing [Err]
The [Err] button will display a text listing of all the errors trapped in the WLC ProjectHook and
any of the registered hook objects as long as the have an aErrorDetails[] error collection array.

Figure 10 – The WLC ProjectHook has the ability to trap errors and have them displayed.

This particular example is hopefully what you will see the majority of the time since there is
no errors recorded.

WLC ProjectHook Field Mapping Set Creation [New FM]
The WLC ProjectHook Field Mapping Set Creation commandbutton will generate a skeleton field
mapping group in the field mapping table. (see the section “How to programmatically control the
VFP IntelliDrop settings” earlier in this whitepaper for implementation details on the Field
Mapping hook class)

First you will be prompted for the name of the field mapping set. The value entered here will
be the text added to the cCategory property in the project specific subclass of the
cusHookFieldMapping class.

Figure 11 – The WLC Field Mapping Utility prompts you for the required set name.

Next you will be prompted for the template set. If you have a set that you want to pattern
the new set after you can enter the set name in. If the set does not exist the new set is based on
the default set (VFP baseclasses).

Figure 12 – The WLC Field Mapping Utility prompts you for the option set template name.

The set is then created. After the set is generated you might need to update the class
libraries or customize the class names for each of the data types mapped for the project. This

can be accomplished on the WLC Project Builder (Field Mapping page). Optionally you can open
up the WLCFieldMapping table and alter the records via a BROWSE window.

Most Used Projects combo and [Open]
The most used projects combobox reads the audit file if have implemented the cusHookAudit
hook class. Each time a project is opened it is recorded if you are using this feature. The
dropdown will display the project name, the folder it is in, and the number of times it was logged
as being opened.

NOTE – This feature is different from the most recently used list that is on the Files menu.
The Files menu shows the files in order that they were last open. The combobox we have on the
WLC Project Tool toolbar shows the files in order of how many times they were opened. So the
top on the list is the one you open the most.

Select the project and click on the Open button to the right of the combobox. The project will
be opened. This is just another way to quickly get at your popular projects. If you have not
implemented the logging feature you will not get the combobox or the Open commandbutton.

Copyright
Copyright  2002-2004 Richard A. Schummer. All Worldwide Rights Reserved

Author Profile
Rick Schummer is the lead geek at his company White Light Computing, Inc., which is headquartered in southeast
Michigan, USA. He prides himself in guiding his customer’s Information Technology investment toward success. After
hours you might find him creating developer tools that improve developer productivity, or writing articles for his favorite
Fox periodicals and user group newsletters. Rick is a co-author of Deploying Visual FoxPro Solutions, MegaFox: 1002
Things You Wanted To Know About Extending Visual FoxPro, and 1001 Things You Always Wanted to Know About Visual
FoxPro. He is a founding member and Secretary of the Detroit Area Fox User Group (DAFUG) and a regular presenter at
user groups in North America. Rick has enjoyed presenting at GLGDW 2000-2003, Essential Fox 2002-2004, VFE
DevCon2K2, and scheduled to speak at the Southwest Fox 2004 conference.
raschummer@whitelightcomputing.com, rick@rickschummer.com,
http://www.whitelightcomputing.com and http://www.rickschummer.com

