

Visual FoxPro
Programming Standards

and
Guidelines

Version 4.0
May 16, 2004

Public Domain

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page i
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Table of Contents

TABLE OF CONTENTS...I

PURPOSE OF STANDARDS AND GUIDELINES .. 1

PURPOSE OF DOCUMENT.. 1

WHO IS RESPONSIBLE TO FOLLOW THE STANDARDS AND GUIDELINES?.. 2

WHO IS RESPONSIBLE FOR CHANGE? .. 2

PROCESS OF IMPLEMENTING CHANGE.. 2

NAMING CONVENTIONS.. 3
DATABASE NAMING CONVENTIONS .. 3

Data Type (VFP tables)... 3
Data Type (SQL Server tables) .. 3

VIEWS... 4
Views Created in Code ... 5

DATABASE OBJECTS .. 5
Triggers.. 6
Stored Procedures ... 6

VARIABLE NAMING CONVENTIONS... 6
Scope ... 7
Data Type ... 7
Field Memvars vs. Tables vs. Declared Memvars ... 7

OBJECT NAMING CONVENTIONS.. 8
SOURCE CODE NAMING CONVENTIONS... 9

HEADER INFORMATION... 9
PROGRAM/CLASS HEADER .. 9

Program/Class Example:..11
METHOD/PROCEDURE/FUNCTION HEADER ...12

Procedure/Method Example: ..12

COMMENTS ... 13
FULL LINE AND IN-LINE ...13
SPECIAL COMMENTING..13

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page ii
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

CUSTOM PROPERTIES AND METHODS..13

INDENTATION AND SPACING... 14

ALIASING ... 14

BEST PRACTICES REGARDING UPDATEABLE VIEWS... 15

DEVELOPMENT LANGUAGE RESERVED WORDS... 15

METHODS, PROCEDURES, AND FUNCTIONS... 15
METHOD, PROCEDURE, FUNCTION NAMING ..15
FORM DELEGATION ..16
CHECKING NUMBER OF PARAMETERS ..16
PASSING PARAMETERS..16

FILE NAMING CONVENTIONS .. 16
DATA FILES..16

Databases ..16
Tables ...16

PROJECT FILES ...17
EXECUTABLE FILES...17
APPLICATION SOURCE FILES ..17
DEVELOPMENT DIRECTORY STRUCTURE...17
PROTOCOL TO CHANGE FRAMEWORK CLASS LIBRARIES...18

TEMPORARY CURSORS... 18

MESSAGE HANDLING... 18

ACCESS KEYS... 18
CONTROLS THAT REQUIRE AN ACCESS KEY...19
DISCRETIONARY ACCESS KEY USE..19

HELP... 19

REPORTS .. 19

MISCELLANEOUS GUIDELINES.. 19

VERSIONING.. 20
VERSION RELEASE EXAMPLE ...20

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page iii
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

TESTING.. 20

PROJECT LEVEL STANDARDS .. 20

APPENDIX A: DOCUMENT HISTORY ... 22

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 1
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Purpose of Standards and Guidelines
The definition of the word standard has many meanings, but in the context of developer standards we like the
following definition:

stan·dard (stan’dard)

n. Abbr. std.

1. An acknowledged measure of comparison for quantitative or qualitative value; a criterion.
An object that under specified conditions defines, represents, or records the magnitude of a unit.

2. The set proportion by weight of gold or silver to alloy metal prescribed for use in coinage.

3. The commodity or commodities used to back a monetary system.

4. A degree or level of requirement, excellence, or attainment.

We also grabbed this definition of Guideline while at Dictionary.com:

guide·line (g d l n)
n.

1. A statement or other indication of policy or procedure by which to determine a course of action.

The shining standard definition “A degree or level of requirement, excellence, or attainment” is something we pride
ourselves in at White Light Computing, Inc. The standards and guidelines are written for two reasons, to write the
best darn code that is ultimately supportable and extendible, and to make it easier to read and understand the
functionality of the code developed.

Our code is written with the expectation that it performs optimally and that it meets or exceeds the requirements of
our customers. We use these standards and guidelines to enhance the communication of the requirements and the
implementation between our developers and the developers we collaborate with on projects. You might have
questioned the context of “The set proportion by weight of gold or silver to alloy metal prescribed for use in coinage”
with respect to developer standards. We consider these standards and guidelines the “gold standard” at our
company. In this business (like so many others), time is money, and a deviation from standards costs us developer
time, which translates to lost revenues. Nothing worse than a developer chasing his tail because he assumed the
other developer adhered to the standards. Deviating from standards will guarantee that some day one of your co-
workers will go down a path thinking one thing, when the reality is something else. Following the standards does not
guarantee that your co-workers will not make a mistake or follow his or her assumptions, just to make sure we do
not to push them into a large sinkhole.

Purpose of Document
The purpose of this document is to consolidate and clearly define the standards and guidelines that have been
approved and are currently being practiced by the development staff at our company. These guidelines are a living
list of items. All applications created during this timeframe are expected to follow these guidelines unless technically
prohibited, until such time that a revision of these guidelines is released. It is not the intention of the development
teams to grandfather these practices back to previously developed applications, nor projects assumed from clients
that were developed by another company. Henceforth it will be necessary to indicate the version of standards
followed in the documentation and code headers of the application being created.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 2
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

It may initially seem odd that the standards and guidelines outlined in this publication seem very familiar. It is the
intention of White Light Computing, Inc. to conform to as many industry standards as practical in meeting the needs
of our customers and our developers. We have developed these standards from everyday practice in our past
development and from reading the writings of some of the finest developers in our development community.

Who is Responsible to Follow the Standards and Guidelines?
You! Each and every developer at White Light Computing, Inc is responsible to follow the standards and guidelines
detail in this documentation as it is published. This is not optional; it is a requirement for employment in this fine
organization.

Who is Responsible for Change?
You! Each and every developer at White Light Computing, Inc (and other companies that adopt these standards) is
responsible for enhancing, improving, adjusting, adding to, deleting from, and in general changing this living
document. We not only encourage change, but demand that our developers help improve the development standards
and guidelines. We know that the code solutions we develop and the communications between developers will be
better each time this document is improved.

Process of Implementing Change
The process to improve the standards and guidelines is straightforward:

1. Develop the idea.

2. Put it in writing. Publish the idea, include any supporting documentation like the old standard if improving one,
reason for the change or new idea, and make sure it is available for all other developers to see. This
publication will be centrally located and accessible for all developers to be able to read. The repository will
keep all the proposed changes until the regular standards and guideline meeting is held.

3. Open the debate dialog during a regular standards and guidelines approval meeting.

4. Motion is made and seconded to submit change for a vote, vote is taken, majority rules.

5. If accepted, the standards and guidelines librarian will update this documentation.

We want the process to be simple and flexible. It should be noted that the corporate management determine the
participants in the regular standards and guidelines approval meeting. The findings of the participants at the meeting
will be final for that cycle. Any new ideas or changes can be submitted again at a later meeting if they were not
accepted at the meeting they were proposed.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 3
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Naming Conventions

Database Naming Conventions
Variable names, table fields, and other database objects should be in Hungarian notation for readability. The first
character of the field name represents the type of variable it is. These identifying characters will be in lower case.
Then the descriptive variable name using both upper and lower case letters will follow.

Data Type (VFP tables)
This standard will be used for each new project and is consistent for the entire application. The data type indicator is
the first character position and is set up as follows:

Indicator Data Type Example
c Character curCustomer.cLastName
d Date curCustomer.dBirthDay
t Datetime curCustomer.tLastMod
b Double curCustomer.bRate
f Float curCustomer.fValue
g General curCustomer.gPicture
l Logical curCustomer.lSentMail
m Memo curCustomer.mComments
y Currency curCustomer.yYearToDate
n Numeric curCustomer.nItems
i Integer curCustomer.iCustID

Data Type (SQL Server tables)
This standard will be used for each new project and is consistent for the entire application. The data type indicator is
the first character position and is set up as follows:

Indicator Data Type Example
chr Char @cFirstName
chv Varchar @cActivity
chrn Nchar @cLastName
chvn Nvarchar @cLastName
txt Text @mNote
txtn Ntext @mComment
dtm Datetime @tTargetDate
dts Smalldatetime @tCompletionDate
iny Tinyint @nActivityId
ins Smallint @nEquipmentTypeId
int Integer @nAsset
dec Numeric/Decimal @nProfit
rea Real @nVelocity
flt Float @fLength
mns Smallmoney @yCost
mny Money @yPrice
bin Binary @lPath

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 4
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Indicator Data Type Example

biv Varbinary @lContract
img Image @gLogo
bit Bit @lOperational
tsp Timestamp @sCurrent
guid Uniqueidentifier @OrderId _PK/FK
cur Cursor @curInventory

Views
All local and remote view names are to use “v_” as their initial characters.

The view name should include the name of the principle-underlying table used to populate the view cursor. The
number of records expected in the result set should be indicated. Using the underlying table in the singular indicates
that the view retrieves a single record. This will usually be used for a parameterized view using a primary surrogate
or candidate natural key.

Multiple-record views can be indicated by using the principle underlying table in the plural (assuming that you follow
the company standard of naming tables in the singular), or by including the word “List” in the view name, e.g.
v_Customers for a Customer table, v_VendorList for a Vendor table.

Clause Standard Example
Filter conditions can
be indicated by
including “For”
followed by the
parameterized field

For v_CustomersForRegion
v_OrdersForCustomer
v_EmployeesForDepartment

If necessary to
indicate a sort order,
include “By” in the
view name

By v_CustomersBySales
v_CustomersByZip
v_CustomersByState
v_EmployeesByTenure

Views that are
created in code will
have “ND” (for No
Designer) as a suffix
to the view name

ND v_CustomersSalesWithJoinsND

Views created initially
for populating combo
boxes or list boxes
should have “v_cbo”
or “v_lst” as their
initial characters

cbo
lst

vl_CustomerList
vl_EmployeesForDept

Views created initially
for reports should
have “v_rpt” as their
initial characters

rpt vr_SalesYTDForCustomer
vr_EmployeesByName

An optional standard is to include the letters “RO” as the last two characters in the view name (or just preceding the
“ND”) for views created as Read Only (non-updateable) views. In many cases, the fact that the view is not updateable
can be inferred from the table name (seeing “List” in the name for example). Likewise, views that have a name
identical to the underlying table (as in v_Customer for Customer) are very likely to be updateable.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 5
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

If a view must be read-only, if the name is such that it could be inferred to be an updatable view, or if it’s necessary
to distinguish between two identically named views that differ only in whether or not their SendUpdates property is
.T., the programmer should include “RO” in the view name.

Note that one of the advantages of using a non-updateable view for some processes is that the view contents can be
modified, unlike a cursor created from an SQL-Select command without the READWRITE clause, and that an
updateable view can do double-duty. In cases where the view is opened without any intention of making
modifications to the underlying tables, you can use the NOUPDATE keyword if opening the view in code, use the
ReadOnly property of the cursor object if opening the view in the DataEnvironment, or issue a
CURSORSETPROP(“SendUpdates“,.F.,<Alias>) in code to prevent unintentional modification of the underlying table.
Be aware that frameworks like Visual MaxFrame and Visual FoxExpress will see any updateable view as being in
need of a TABLEUPDATE(). If it will be necessary to REQUERY() the view at some point, do not use the ReadOnly
property or NOUPDATE keyword, as the REQUERY() will trigger a “Can’t update the cursor” error – use the
CURSORSETPROP(“SendUpdates“) instead.

While you might find it convenient to use an updateable view in a context needing only a ReadOnly version of the
view, you should never change a non-updateable view to an updateable view – this has the potential of introducing
bugs in other parts of the system using the same view. Instead, open the view in the ViewEditor and save it under a
different name, then change the SendUpdates property, or copy-and-paste the code in CREATEVW.PRG (see next
section) to a new function, and add the necessary DBSETPROP() commands to change the updateable properties.

Views Created in Code
All views are to be maintained either using the ViewEditor, or for more complex views, in code to be contained in a
PRG file included in each project, CREATEVW.PRG. Each CREATE SQL VIEW command is to be wrapped in a function,
with the naming convention “vw” + view name. This allows easy location of views in a CREATEVW.PRG that contains
hundreds of views by using the Document View tool included in Visual FoxPro. If undecided whether to create a view
using the ViewEditor or in code, preference should be given to maintenance in code, even for updateable views. Also
note that the ViewEditor will save your view definition to a PRG.

Views maintained in code instead of the ViewEditor must use the “ND” suffix to indicate “No Designer”, to indicate
that the view is maintained in CREATEVW.PRG, e.g:

FUNCTION vwv_customerListND
 CREATE SQL VIEW v_CustomerListND as ;
 SELECT customer.cCustomerNo, ;
 customer.cName, ;
 customer.cCity, ;
 region.cDescription, ;
 upper(customer.cName) as cOrderBy ;
 FROM customer join codes ;
 ON customer.Region_FK = region.Region_PK ;
 WHERE customer.lActive ;
 ORDER BY cOrderBy
ENDFUNC

Database Objects

Names of database objects should also consist of two parts:
• The prefix, which describes the type of database object.
• The base part, which describes the content of the object.

The following table shows object abbreviations that should be used as prefixes:

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 6
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Object: Abbreviation: Example:
Table Activity (singular)
Stored procedure usp uspCompleteOrder
Trigger tr trOrder_IUD
Default dft dftToday
Rule rul rulCheckZIP
Index idx idx_LastName
Primary key _pk ContactId_pk
Foreign key _fk Order_OrderType_fk
User-defined datatype udt udtPhone

Tables should not have prefixes to describe the object type.

Triggers
The base part of the trigger name should be the name of the table to which the trigger is attached. A suffix which
shows modification statements (insert, update and delete) should also be part of its name.

Example:
• trOrder_IU (trigger on the Order table for Insert and Update)

If there is more than one trigger per modification statement attached to the table (not possible prior to version 7.0),
the base part should contain the name of the table and a reference to a business rule implemented by a trigger:

Examples:
• trOrderCascadingDelete_D (delete trigger on the Order table which implements cascading deletes of order

items)
• trOrderItemTotal_D (delete trigger on the Order table which maintains a total of order item prices)

Stored Procedures
The base name of a stored procedure should usually be created from a verb followed by a noun to describe the
process the stored procedure performs on an object.

Examples:
• uspGetEquipment
• uspCloseLease

If the procedure performs several tasks, all of those tasks should become part of the procedure name. It's okay to
make procedure names longer then variable names. You should be able to pick a name between 20 to 40 characters.

Some developers use the 'sp_' prefix in front of the base name of a stored procedure. This prefix should be reserved
for system stored procedures which reside in the master database and which are accessible from all databases.

You should also avoid computer-oriented or fuzzy names like:
• uspProcessData
• uspDoAction

Variable Naming Conventions
Variable names must be in Hungarian notation for readability with the first character defining scope and the second
character representing the type of variable it is. These identifying characters will be in lower case. Then the
descriptive variable name using both upper and lower case letters would follow. Array data types can have an
additional (optional) third character. This third character defines the data type that is contained within the different
columns in the array. If there are different data types in different columns, use the “x” data type for unknown.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 7
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Scope
The scope is not determined by the name of the variable, but rather how it is declared and scoped by the
development language. This guideline assists the developer when reading code, but it in no way guarantees that the
variable is scoped accordingly (although they should be confident in their co-workers following the standard). This is
the responsibility of a good developer. The following are the guidelines of the scope character.

Indicator Scope Example
l Local lnCounter
p Private (default) pnStatus
g Public (global) gnOldSafety
t Parameter tnRecNo
c Constant cnARRAY_ROWS
r Report rnHours
vp_ View Parameter vp_ComPk

Constants are defined with #DEFINE and are used only for compiles. They are scoped for the program or method that
they reside in. The use of the underscore breaks up word syllables and is optional. The industry standard is to
uppercase all but the scope and data type characters. Some third-party products may use include files (used via the
#INCLUDE) that have constants defined that do not use the scope and data type characters. These constants will be
used as they are defined by the third-party product.

All view parameters are to use “vp_“ as their initial characters. The remainder of the parameter variable name
should mimic the table field involved in the comparison, e.g. “WHERE customer.cCustID = ?vp_cCustID” or “WHERE
company.region_fk = ?vp_Region_Fk”. Where this is not practical for some reason, the view parameter should
give some indication as to what table elements are involved in the comparison.

Data Type
Like the scope character, the data type character allows the developer to read the code easier. It does not guarantee
that the variable is the indicated variable type. This is the responsibility of a good developer to name the variables
accordingly. The following are the guidelines of the data type character.

Indicator Data Type Example
a Array laMonths
c Character, Varchar lcLastName
q Blob, Varbinary lqDocument
y Currency lyCurrentValue
d Date ldBirthday
t Datetime ltLastModified
b Double lbValue
f Float lfInterest
g General (not used) lgLogo
l Logical llFlag
n Numeric lnCounter
o Object loEmployee
u Unknown or mixed luReturnValue

Field Memvars vs. Tables vs. Declared Memvars
The use of m. with memvars is necessary to differentiate between variables declared with a SCATTER MEMVAR MEMO,
and the field name in the table. With the naming convention of defining the scope and datatype of variables you will

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 8
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

not confuse variables defined local and those defined via a SCATTER MEMVAR MEMO. Table/Cursor alias names should
always be used when referencing cursor field names just to further differentiate that you are not referencing a
memvar. Our recommendation is to use SCATTER NAME and use the standard object reference to the data to avoid
any problems/confusion with column names and memory variables.

Object Naming Conventions
Objects are utilized throughout application development. This guideline assists developers in reading method code. It
does not guarantee that the objects instantiated are going to be as they are named. This is the responsibility of a
good developer. The following are guidelines for naming different base objects provided by the development
language.

Indicator Object Type Example
acd ActiveDoc acdCustomer
chk CheckBox chkReadOnly
cbo ComboBox cboEnglish
cmd CommandButton cmdCancel
cmg CommandGroup cmgChoices
ctr Container ctrMoverList
ctl Control ctlFileList
cad CursorAdapter cadEmployee
cus Custom cusApp
dte DataEnvironment dteEmployeeEntry
edt EditBox edtTextArea
frm Form frmFileOpen
frs FormSet (not used) frsDataEntry
grd Grid grdPrices
grc Column grcCurrentPrice
grh Header grhTotalInventory
hpl HyperLink hplCompany
img Image imgIcon
lbl Label lblHelpMessage
lin Line linVertical
lst ListBox lstPolicyCodes
olb OLEBoundControl olbGraphicLogo
ole OLEControl oleProgressBar
opt OptionButton optFrench
opg OptionGroup opgType
pag Page pagDataUpdate
pgf PageFrame pgfLeft
phk ProjectHook phkBase
rel Relation relInvoiceToItems
sep Separator sepToolSection
shp Shape shpCircle
spn Spinner spnValues
txt TextBox txtGetText
tmr Timer tmrAlarm
tbr ToolBar tbrEditReport
xad XMLAdapter xadWSResult

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 9
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Indicator Object Type Example
xfd XMLField xfdStockPrice
xtb XMLTable xtbChecks

Source Code Naming Conventions
Indicator File Type Example
pck Picklist/Lookup form pckPeople
rpt Report criteria form rptCustomerList

Header Information

Program/Class Header
Program and Class Header Information for all non-generated programs and class libraries is to be created using an
outlined box. Also, the header must include all pieces listed below unless specifically stated as optional, even if there
may be no information to provide for that topic. There is no upper limit to the amount of topics a developer may
wish to include in the program header. Additional information is always received well by other developers. Single
spacing is required between topics and topic headings are in upper case.

Note: Only programs developed within the company need to be documented in this fashion. The respective
development staff documents any third-party programs or libraries.

Section Description
Program Name or
Class Name

Program name
Class Name

Author Original programmer's name.
Copyright Year program was created or modified.
System This is the name of the application the program or class was created

for or used by. If it was created for a common library or other
generic routine place “Common Program” or “Common Library” as
appropriate. The directory where the application is located can be
substituted for the system name.

Program Description Description of the program purpose and any other documentation
that is appropriate. It is always better to fault on the side of too
much description <g>.

Parameters: Parameter section consists of four subsections. All subsections are
optional unless parameters exist in the code. If there are no
parameters, then “None” is the description for the section and none
of the subsections are included.

 Calling Syntax Example of a program line with all input parameters, and actual
syntax. All parameters must be in brackets <> and will correspond
to the parameters in the Input Parameters section.

 Input Parameters Description, data type, whether optional, whether passed by value,
indicate default value if set.

 Output Parameters Description, data type, whether it is a returned value, and indicate
any input parameters which are altered intentionally for use in the
calling routine.

 Sample Call Real calling example. Use as much code as necessary to give other
developers a good idea of how this routine can be executed (i.e.
lines of setup and follow up code needed)

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 10
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Section Description
Databases Tables Accessed List of all tables accessed in this routine that are contained in a

database. Also include the database container that the table belongs
to in parentheses. This is optional.

Free Tables Accessed List of all tables accessed in this routine that are not contained in a
database. This is optional.

Development Standards Version of standards used, and any non-conformance.
Special Requirements/Devices Special requirements or devices needed for the program to execute

correctly. This is optional.
Test Information Note any test information within the program. Must include name of

Test Driver if the program is a library module. This is optional.
Future Enhancements Any thoughts on suggested enhancements for a future release. This

is optional.
Language/Version Development tool and version used to create routine, or version it

can be run under.
Change Log Date, developer initials, work order number assigned, and

description of change. This must be included any time the routine is
modified. Include any hint to the work that was completed for the
changes implemented.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 11
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Program/Class Example:
**
* PROGRAM NAME: FrameWorkWizard.prg
*
* AUTHOR: Richard A. Schummer
*
* COPYRIGHT © 2001-2004 All Rights Reserved.
* White Light Computing, Inc.
* 42759 Flis Dr.
* Sterling Heights, MI 48314
*
* SYSTEM: Internal FrameWork Wizard
*
* PROGRAM DESCRIPTION:
* This program starts the application wizard, sets up the initial environment,
* instantiates the application object, and kicks off the READ EVENT.
*
* PARAMETERS:
* CALLING SYNTAX:
* DO FrameWorkWizard.prg WITH <tcParam1>
*
* INPUT PARAMETERS:
* tcParam1 = Optional parameter, this is a way to access special
* development features when it is "Development",
* otherwise nothing special happens
*
* OUTPUT PARAMETERS:
* None
*
* SAMPLE CALL:
* DO FrameWorkWizard.prg WITH "Development"
*
* DATABASE TABLES ACCESSED:
* None
*
* FREE TABLES ACCESSED:
* AppInfo = Application initialization file
*
* DEVELOPMENT STANDARDS:
* Version 3.0 compliant
*
* TEST INFORMATION:
* None
*
* SPECIAL REQUIREMENTS/DEVICES:
* None
*
* LANGUAGE/VERSION:
* Visual FoxPro 7.0 or higher
**
* C H A N G E L O G
*
* Date Dev System Description
* ---------- --- ------ ---
* 01/20/1999 RAS PT Created program
* --
**

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 12
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Method/Procedure/Function Header
Procedure and method header information for all non-generated procedures and class libraries is to be created using
an outlined box. Creating the right side of the box is optional, but should remain consistent through out the
application. Also, the header must include all pieces listed below unless specifically stated as optional, even if there
may be no information to provide for that topic. There is no upper limit to the amount of topics a developer may
wish to include in the header. Additional information is always received well by other developers. Single spacing is
required between topics and topic headings are in upper case.

Note: Only custom methods (those not provided by Visual FoxPro) need this documentation.

Note: Only programs developed within the development team need to be documented in this fashion. Any third-party
programs or libraries are documented by their respective development staff.

Section Description
Procedure Name or
Function Name or
Class Name

Procedure, function, or class name.
This is optional.

Author Original programmer's name. This is optional
Procedure Description or
Function Description or
Class Description

Description of the routine’s purpose and any needed documentation that
is appropriate. If this is a class method, the class method description
that is entered in the New Method or Edit Property/Method dialogs (and
shows in the Property Sheet) is accepted in place of this in the code. If
there is not enough room in the 256 character limit that the description
has, then add more in this header.

Parameters: Parameter section consists of two subsections. All subsections are
optional unless parameters exist in the code. If there are no
parameters, then “None” is the description for the section and none of
the subsections are included. VFP intrinsic parameters do not need to
be documented.

 Input Parameters Name, description of parameter, data type, if optional, if passed by
value, indicate default value if set.

 Output Parameters Name, description of parameter, data type, if it is a returned value, and
indicate any input parameters if they are altered intentionally for use in
the calling routine.

Procedure/Method Example:
**
* PROCEDURE NAME: SelfTest
*
* PROCEDURE DESCRIPTION:
* This method contains code to completely test this object standalone.
* The tests are performed by passing it a number indicating the test
* to be performed.
*
* PARAMETERS:
* INPUT PARAMETERS:
* tnTest = Required, numeric, a number between 1 and nth test.
*
* OUTPUT PARAMETERS:
* llSuccess = Logical, .T. if all tables open, else .F.
**
Note: The header for a class that resides in a Visual Class Library should have the header place in the custom
zReadMe Method (standard in Visual MaxFrame Professional) or the zzAbout added to the ILibs in Visual FoxExpress.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 13
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Comments

Full Line and In-Line
Comments within the code are done in two different manners, full line and in-line. Full line comments are used when
a detailed explanation is required. Full line comments are to be written as complete sentences and void of
abbreviations unless defined prior to use within the specific program being commented. Full line comments are
indented to line up with the segment of code being commented.

In-line comments are used to provide a short statement about a specific line of code. In-line comments are not
required to be full sentences, and can be abbreviated if the abbreviation is easily understood. In-line comments are
included on the line with the program code and are required to line up with each other through out a segment of
code.

An accepted guideline is to begin in-line comments in column 40, but this is optional. The key is to line all comments
up and remains consistent throughout the application.

All comments should reflect what the actual code is doing. A liberal use of comments is better than a sparse use of
commenting. If you change the code, change the comments to reflect the changes made.

Date the comments when changing code that is already in production. Initial the comments with the developer initials
so the others know who made the change. These are both optional.

Special Commenting
Starting a line with an asterisk (*) usually indicates normal commenting through out an application. In addition to
normal comments we have categorized various special comments. Using special commenting practices are not
required, but could be very helpful for developers doing joint development of an application. All special commenting
should include initials of developer and date.

Comment Characters Description
*! Enhancements and future features
*? Open Items for Release; marker to indicate a correction or change required

prior to release
*+ Walkthrough questions and issues
*^ OR *!* Blocking out blocks of test code
*< Changes commented out instead of removed, must include comment.
*$ Workaround a known Visual FoxPro or framework bug

Example:

*? Make sure release version updated
*+ Ckeck out new process for standard library

*< RAS 07-Apr-2001 Different process implemented
*< DO SkipItPR
DO SkipIt2PR

Custom Properties and Methods
All custom properties and methods must have comments that show up in the property sheet.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 14
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Indentation and Spacing
Indenting nested conditions and loops is expected. Three spaces or a tab is required for indentation. Tabs settings
are set to 3 spaces when used to give the code a consistent look. Do not nest over six levels deep. IF…ENDIF
statements and looping constructs need to be separated with one blank line before and after. The only exception to
this is if there is an IF statement or looping construct directly before a line of code and it is indented. The indention
will be equivalent to the blank line and no additional blank line is required.

EXAMPLE:
IF llTester
 DO TestProcedureForDevelopment
ELSE
 IF llActual
 DO OtherPR

 DO WHILE !EOF()
 DO SkipItPR
 ENDDO

 FOR lnCounter = 1 TO 10
 IF llNoWay
 DO Backup
 ENDIF
 ENDFOR
 ELSE
 FOR lnCounter = 1 TO 10
 DO SkipIt
 ENDFOR

 MESSAGEBOX(“Nice document!”,16)

 IF llSetThis
 gnValue = 1
 ENDIF
 ENDIF
ENDIF

Line spacing is required between procedures, functions, class definitions, methods, and/or subroutines incorporated
in the same program. The accepted guideline is 2 blank lines. The goal is to achieve readable code. It is also
important to remain consistent throughout your code.

Variables, conditions, and expressions found in a block, procedure, or function are required to be in alignment with
others of its kind. It is a suggested practice that variables and similar expressions being defined be aligned on the "="
sign within a block of code (optional).

EXAMPLE:
lnCount = 1
lcMaxNum = "1000"
ldYearEnd = {^1997/01/01}

Aliasing
All field names are to be aliased all the time. The only exception is in a REPLACE command, in which the aliasing of
the field names is optional (but encouraged), but the IN clause is required.

All functions that accept an alias argument, (e.g. RECNO(), EOF(), RECCOUNT(), CURSORGETPROP()) should never
be used without the alias argument. A rule of thumb for the developer/programmer is that any time they issue a
SELECT <alias> command, a warning bell should go off. If it is being done to support a command that does not

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 15
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

accept an alias argument (such as SCAN…ENDSCAN or LOCATE), then ok, but if it is being done to support a function or
command that accepts an alias argument, the SELECT <alias> should be removed, and the alias argument should
be added to the command or function.

Best Practices Regarding Updateable Views
An updateable view must act only on a single table, and in general, should only include columns from that single
table.

It may be useful on rare occasions to include fields from another related table in an updateable view. Sometimes
doing so can be a very convenient way of simplifying some implementation detail. There is nothing inherently wrong
with including non-updateable fields from a related table in an updateable view; it is simply a practice that should be
used sparingly. Whenever you find yourself wanting to follow this practice, ask yourself how you would implement the
solution without including related, non-updateable fields in the updateable view. Examine the design of the data
structures you’re working with; a need to include fields from related tables in an updateable can indicate a flaw in the
basic data model.

If implementation without inclusion of the non-updateable related fields is not significantly more complex, or
significantly less intuitive or maintainable, then keep the updateable views “pure”. If there is a flaw in the database
that is being circumvented by inclusion of non-updateable related fields, fix the database schema if possible.
Otherwise, if the database design is good, and if inclusion of non-updateable related fields in the view results in a
greatly simplified or maintainable implementation, have at it.

Note that a variation on the inclusion of non-updateable related fields into a view is to include joins on tables whose
fields are not included in the field list, and (and as a result are not updateable), but do participate in WHERE clauses.
The principle for use of these views is the same as that for updateable view that include non-updateable fields from
related tables.

A view should never, ever update fields from more than one table. While such a view is supported in Visual
FoxPro, it is not supported in any database server such as SQL/Server or Oracle, thus this practice (in addition to
being very poor design) makes your application VFP/LAN specific, and cannot be upsized to a client/server application
at a later date. Even in the case of a one-to-0-or-one relationship, it’s just as easy to create two updateable views

Development Language Reserved Words
All words defined and/or reserved by the development language be in the same case and spelled out. Our company
has chosen to put all reserved words in upper case. Again, the developer is required to remain consistent throughout
the application. All words and/or variables created by the developer are to be in Hungarian notation (mixed case,
upper on word syllables). Properties follow variable naming guidelines; methods follow Procedure naming guidelines.
The advent of IntelliSense in Visual FoxPro 7 will enhance the conformance of this standard provided that you
configure the IntelliSense Manager with the correct settings.

Methods, Procedures, and Functions

Method, Procedure, Function Naming
Method, procedure, and function names are not required to be a specific length, but Hungarian notation (mixed case,
upper on word syllables) is required and must be descriptive to the development staff.

Method names will follow the Verb-Object except where several methods should be grouped on the property sheet.
This could be where several methods are all hook methods that should start with the method from which they are

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 16
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

called, or some other situation in which the methods should logically be grouped by some attribute such as the object
on which they operate, or the process they support.

Form delegation
Developers spend too much time trying to track down bugs in a call to a program somewhere in framework classes.
These problems usually result from a call in a control method in a composite class. Had these calls been in a form
method, it would have been found much quicker. To reduce the amount of debugging, it is a programming standard
to delegate most form functionality to form methods. This eases maintenance, encourages code re-use and good
object design.

Exceptions to this rule can include a single control Refresh(), code to change state, enable/disable, or combobox
Requery() code.

Checking Number of Parameters
The suggested practice for all methods, functions, and procedures with parameter(s) is that they must check for the
number of parameters and assign default settings for optional parameters if not passed. If parameters are required
and not passed, then the procedure should display an error condition and halt execution. Assertion code (see ASSERT
and SET ASSERT) should be used when developer messages are required. These will never reach the end user.

Passing Parameters
All parameters are passed by value to functions and by reference to procedures (Visual FoxPro default) unless
otherwise specified.

File Naming Conventions
Application files have been separated into four categories: Data Files, Executable Files, Application Source Files, and
Class Library Files. Each of these files has a disk presence. All files can use the long file name supported by all
current PC Operating Systems and Network Operation Systems. The only exception will be files that are implemented
on a OS or NOS that does not support long file names in the implementation. It is recommended that the names be
short and sweet, yet descriptive for others to understand. There will be no embedded spaces in any filenames or
directories.

Data Files
Data Files include databases, tables and flat ASCII files.

Databases
Database names are descriptive to the context of the application(s) that use it. Some frameworks like Visual
MaxFrame Professional framework forces database names to consist of two characters.

Tables
The database table name should reflect the type of entity of information retained in the rows of the table. Long
filenames and aliases are acceptable for implementations on platforms that allow long filenames. All table names
will be singular in nature. For instance, we will use Customer, not Customers.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 17
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Project Files
Project files are considered source code. Projects will be stored in the root folder for the project. Optionally, we
prefix project names with a three-letter acronym to indicate the company the project is created for.

Executable Files
All executable files are compiled with the same name as the application project file. This helps developers determine
the project to maintain when enhancements need to be made or bug fixes need to be applied. Optionally, executable
files can have the company three-letter prefix removed.

Application Source Files
All application source files (including programs, forms, menus, and queries) should be named to reflect the process
or feature they represent. The key is to place them in the appropriate directory under the project directory. The
company uses the following directory structure:

J:\WLCProject\NiceCustomer\Common\
Libs (Visual Class Libraries)
ILibs (VFE Framework Class Libraries)
Docs\ (Documentation)
Images (Graphic files, including BMP, ICO, GIF, JPG)
Sounds (Sound clips)

J:\WLCProject\NiceCustomer\CoolProject\

Libs (Visual Class Libraries)
Data (Databases and tables)
Deploy (Installation project files, like InstallShield, Wise for Windows Installer, INNO)
DataModel (xCase data models)
Docs\ (Documentation)
 FunctionalSpec (Functional Specification Documentation)
 Support (Technical Support information)
Forms (Forms)
Images (Graphic files, including BMP, ICO, GIF, JPG)
Html (HyperLink Markup Language files)
Includes (Header include files)
Labels (Label forms)
Menus (Menus)
MetaData (Metadata for the application)
PDFs (Acrobat Reader documents)
Prgs (Program files)
Queries (Queries)
Reports (Report forms)
Sounds (Sound clips)
Text (Text files)
Test (Any test files used in Quality Assurance)
Help (Help source code)
Conversion (Data conversion source code - Optional)
Save (AKA: CYA, files that need to be saved for later, possible subdirectories)

Development Directory Structure
Grouping Directory
Visual FoxExpress Libraries J:\WLCProject\Framework\VFE\VFEFrame\Libs
Visual FoxPro Fox Foundation Classes J:\WLCProject\Framework\FFC

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 18
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Protocol to Change Framework Class Libraries
No one changes the framework class libraries without expressed written permission from the chief architect or
project manager. Only company class librarians change the code in the libraries above the project level. No classes
will be subclassed from a class that is lower in the hierarchy. For instance, a report object form in the company level
will not be subclassed from the project level report object form.

Temporary Cursors
Temporary cursors are generated via SQL-Selects or create cursor code. These cursors need to be named uniquely
and the name should reflect the data in the cursor. Naming convention is to start out the cursor name with a “cur” so
other developers know that the cursor was generated and not the alias of a database table or view.

Always clean up temporary cursors when the process they are used by is completed.

Message Handling
The company standard is to utilize the public domain MsgSvc functionality to allow all our applications to be enabled
for internationalization. All commercial frameworks provide a mechanism to access the strings translation table
provided by Steven Black.

All other standard information windows will leverage the Windows (and Visual FoxPro) Message Box. All messages
will use the appropriate icon and button set. A default button is expected. All MESSAGEBOX() function calls will use
the standard constants defined in the FoxPro.h include file.

EXAMPLE:
=MESSAGEBOX("Need to pass name of Database Container and it's path", ;
 MB_OK + MB_ICONEXCLAMATION, ;
 _SCREEN.Caption)

The company standard is to include the _SCREEN.Caption as the caption of any message.

Access Keys
Access keys (or Hotkeys as they are sometimes called) are useful for various reasons. Some of the reasons for
assigning access keys include the following. If the mouse becomes inoperative the user may still use the application.
Access keys allow users who are fast typists and prefer the keyboard to access the controls via the keyboard. Users
with certain disabilities may not be able to use a mouse. Access keys make the application more user-friendly.

The rule of thumb for assigning an access key is to use the first letter, or meaningful letter in the caption. A letter
should only be assigned as an access key once. If the first letter is already assigned to another control, then look for
an unassigned consonant. Lastly, use an unassigned vowel. If there still are no unassigned letters, consider changing
the control’s caption, reassigning letters on other controls or if assigning an access key falls with the discretionary
use guidelines, not using an access key.

Some controls in a project should always have an access key, while others are left to the discretion of the client or
project leader. Destructive controls may or may not use an access key; however, destructive controls that use an
access key should always prompt the user before proceeding. Controls that are inaccessible without a mouse always
must use an access key. All controls should be keyboard accessible in some manner, whether it’s via a tab or hotkey.
Controls without a caption can use an access key by placing the access key on the label preceding it. Just set the tab
number of the label with the access key to one less than the control you wish to access.

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 19
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Controls that Require an Access Key

• Menu pads
• Menu items
• Pages on a page frame
• Command buttons (with Captions)
• Controls that are only accessible with a mouse

Discretionary Access Key Use

• Any control as required by design or customer

Help
Help is to be invoked by pressing the F1 Key or off the menu following the Windows User Interface Standards and is
presented in the Windows Help System (HTML Help). The practice of using Context Sensitive Help is highly
recommended.

Reports
The following section describes guidelines for the development of reports using the VFP report designer. Each
project will have a template for the reports to follow. The project leader to meet the expectations of the customer
defines the standard template. Some basic considerations to be included in report guidelines include:

• Right-justify numeric fields, align on the decimals.
• Left justify character fields
• Align titles the same as the data. Left justify for character, right for numerics.
• Include the date and time.
• Always show the data filtering criteria on the report so the user knows the scope of the data included. This

filtering criteria is in natural language, not the VFP filter statement.
• Always design for 8.5 x 11 paper, unless otherwise dictate by special requirements.
• Be consistent in the design and layouts of reports for a client. For example, always use the same heading

styles, logo placement, date placement, fonts, font size, etc. for all reports for the customer/project.

Miscellaneous Guidelines
This section is a catchall category to define guidelines for various developments within Visual FoxPro.

• Arrays will use the square brackets ([and]) to delimit the array indexes as well as the array dimensioning.
• DO CASE will contain an OTHERWISE even if blank (with documentation defining why blank) so other developers

know that the original developer considered the alternatives.
• Leave the SET environment the way it was when you make a change to a SET before exiting the method,

procedure or function. This is especially critical when developing in a black box object.
• Declare all variables LOCAL unless otherwise needed PRIVATE. Document the reason they were declared in the

first place, on the line they are declared or on the line above the declaration.
• All variables are defined at the top of a method, procedure, function, or program.
• Always use “FOR !DELETED()” on appends (unless deleted records are required by customer)
• No dots (.) around the AND, OR, or the NOT logical operators
• The not equals operator will be indicated by the <> OR #.
• SQL-Selects should only be performed with previously opened cursors (avoids potential pathing problem).
• All table joins in SQL-Selects will use the JOIN syntax instead of the WHERE clauses.
• Captions will be filled in for tables and views, fields, and indexes (via DBCX)

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 20
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

• Use the SELECT() to save the current workarea before selecting another workarea. The workarea can always
be reselected; cursor aliases go away when they are closed.

• All temporary cursors created in code are closed manually.
• PRIVATE variables must initialized after declaration.
• Others…

Versioning
• Version numbering system is as follows:
• The initial release of a product will be v1.0.
• Visual FoxPro 5.0 introduced the internal EXE version number. This number is in the format 1.2.3. The first

number is the major release number, the second number is the minor release number, the last number is the
build number. The build number is a counter incremented each time the EXE is built for the current release.
This number can be used to keep track of issues with the release as interim betas are created.

• Major enhancements will increase by one.
• Minor enhancements will increment by tenths.
• Releases for correction of anomalies or betas will use the “build” number.

Version Release Example
A release of V2.3.165 means there have been two major functional releases of the application. It is on the third
minor release, and this is the 165th time the application EXE was created for this minor release. Note that when the
version goes to 3, all subsequent revision levels will go back to zero.

Testing
This section contains the issues related to testing applications.

No piece of code shall be considered ready for testing until after it has been run by the developer and has no syntax
errors. If you cannot run it, you cannot test it! The Quality Assurance Team will test all application functionality
before it is released to a customer for acceptance testing and production use.

No EXE is ready for customer use until after it has been run standalone by our staff.

All business objects will have a SelfTest() method. This method will contain one or more test scenarios to completely
test the business object functionality. This test method will be developed when the object is written and will be
considered the foundation of the test plan. The developer will write this method as a communication to other
developers in our company so they understand how this object is used and what is needed to utilize this object within
the context of the application.

Project Level Standards
All the standards and guidelines included in this document are generic enough to be used across all applications
developed by our company. They also leave room for flexibility when it comes to a specific project. Items that should
be considered at the project level include:

• Standard Labels
• Standard Industry or Application-wide Abbreviations
• Standard Fonts (Ex. Tahoma, size 8)
• Hot Key Standards
• Standard form layouts
• Report Layout standards

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 21
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

• Standard behavior (Ex. When I enter a zip it should fill in the City in every form)
• What is the minimum screen resolution this system should handle?
• What hardware does this system have to be compatible with?

Visual FoxPro Development Guidelines

Version 4.0 - Revised (May 16, 2004) Page 22
Located: K:\WLCDOCUMENTS\ADMINISTRATIVE\STANDARDS\DEVELOPERGUIDELINES4POINT0.DOC

Appendix A: Document History

Date Updater Description

May 16, 2004 Richard A. Schummer Adopted previous documented (prior life at EDS, Kirtland
Associates, Polaris Solutions, and Geeks and Gurus) as basis
to start the new standards implemented at, White Light
Computing, Inc.

