ViewEditor v. 2.0

© 2001 – Steve Sawyer

Important Note

As of this date (mid October, 2001) this version of ViewEditor is considered to be feature complete and will continue to be compatible with VFP 6 only. Bug fixes to version 2.0 will be considered on a case-by-case basis. All new features will be incorporated into ViewEditor version 3.0 which will be available at some future date. At present, version 2.5 (available on the same site where you downloaded this version) has been recompiled in Visual FoxPro 7, and uses a VFP 7-specific enhancement to work around a limitation in Version 2.0. See the documentation for version 2.5 for details.

Introduction

ViewEditor is a utility to allow easy maintenance of Visual FoxPro local and remote views. It is intended to address some of the limitations of the Visual FoxPro View Designer. The view designer is a good tool for learning how to create SQL – SELECT statements, but once one has become comfortable with writing SQL code, it is often just as easy to simply write out the SQL command. In addition, the VFP View Designer has some specific limitations:

· The View Designer will sometimes store two or more tables for the “tables” property of the view, despite the fact that fields from only one view may be marked as updateable.

· The View Designer will sometimes drop the database-and-exclamation-point qualification for the UpdateName property of view fields, causing fields marked as updatable to not properly update.

· The View Designer constructs SQL code using the “nested” join syntax rather than the more intuitive and more flexible “sequential” join syntax, making it extremely difficult to correctly write complex queries, particularly those involving a single parent table joined with two or more child tables.

· The View Designer provides direct access to only some of the properties that the developer may wish to set when creating views.

ViewEditor 2.0 has been designed to overcome these limitations.

Table of Contents

1Introduction

2Table of Contents

3Design Rationale for ViewEditor

3Running ViewEditor

3Using ViewEditor

4A Quick Tour

10Other Features

10Remote View Support

11Building a Field List

12Previewing the Result Set

12Exporting View Creation Code

12Listing 1 – Exported View Code

14Technical Notes

15Command-line operation

15Integration with Other Tools

16Release History

Design Rationale for ViewEditor

The Visual FoxPro View Designer presents a frustrating mix of strengths and weaknesses. Its major weakness is its inability to allow the developer to create complex SQL statements; its major strength is the ease with which the developer can select columns to include in the result set, and set the various properties necessary for creating updateable views, including the WhereType, UpdateType, KeyField and Updatable properties for the view and the columns within the view. In addition the View Designer will occasionally introduce difficult-to-track-down errors in the view properties.

ViewEditor is designed to overcome these limitations, first by allowing the developer to write their own SQL code, second by providing a means to easily grab a field list from the underlying tables on which the view is based, third by exposing more of the properties that are difficult (or impossible, such as view-level rules) to get to from the View Designer.

Running ViewEditor

ViewEditor is compiled as an EXE, but is intended to be run from within the VFP development environment. I played around with making it a top-level, MDI form, but after working with it for awhile I realized that it didn’t make sense to run it as a stand-alone application. It’s compiled as an EXE to make it easy to extract version information for display on the form’s title bar.

To run ViewEditor, insure that the location of VIEWEDIT.EXE is in your path, and simply issue the command DO VIEWEDIT in the command window. The program is non-modal, and does not use a private datasession.

I’m open to suggestions re the datasession issue. The program does create a temporary working cursor during execution (for display of field properties), and it is possible for the user to issue a CLOSE TABLES ALL and hose up the ViewEditor’s environment. However, the upside is that ViewEditor will automatically assume that any DBC it finds open and selected is the DBC containing the views you wish to create or modify.

Using ViewEditor

A Quick Tour

[image: image1.png]
Figure 1
Figure 1 shows the ViewEditor interface as it appears after an existing view has been selected for editing.

There are two “Database” textboxes. One for display of the DBC that contains the views, and the second for display of the DBC that contains the tables that are accessed by the views. This is to support those who keep views and tables in separate database containers. If you only use a single DBC in your application, selecting the “view repository” will also specify the same DBC by default as the table repository. If you use the two-DBC technique, simply select a second DBC as the table repository. Both text boxes are a read-only display of their respective databases. If there is a database open and currently selected when ViewEditor is launched, it assumes that this is both the view and table repository database you wish to work with. Clicking on the ellipsis button to the right of either textbox will allow you to select a different database.

ViewEditor is essentially disabled until you’ve selected a database to work with, as views can only be stored in a Visual FoxPro database.

Once a database has been selected, three of the six toolbar buttons at the top of the ViewEditor become enabled. As their tooltips will indicate (if the icons are less than intuitive), they will [image: image2.png] create a new view, [image: image3.png] open an existing view, and [image: image4.png] retrieve a list of columns from any table in the database.

Immediately below the database textbox, is a read/write textbox for displaying or entering the view name.

It isn’t necessary to click on the “New” button to begin creating a new view. It is provided as a way of clearing any previous views from ViewEditor so that a new view can be created. Clicking on the “Open” button presents a list of view contained in the selected database. Selecting one and clicking on the “Select” button, or double-clicking on your desired selection will load this view and it’s properties into ViewEditor.

Once a view has been opened, the SQL code is formatted and displayed in the editbox on the left of the first page of the pageframe. It is not possible to directly edit this code in this window; it isn’t possible to enable the editing capabilities we’re used to (such as block indenting and syntax coloring) in an editbox. To edit the SQL code, double-click on the editbox, and the code is copied to a temporary .PRG file and loaded into an editor window. Because of this, it’s recommended that after entering or editing SQL code, close the editing window by using Ctrl-W, rather than clicking on the “Close” button on the upper right of the editor window, to avoid being asked “Do you want to save changes to edited_sql.prg?” You’ll note that if you’ve entered new SQL code, or edited SQL code in the editing, a label with a yellow background becomes visible just to the right of the view name textbox, indicating that there are SQL changes pending. This is simply exposing the fact that the ViewEditor needs to re-validate the new SQL code before allowing access to any other features of ViewEditor.

The editbox at the lower right of ViewEditor’s first page is used to establish runtime variables so that the SQL code can be evaluated without generating an error. Consideration was given to prompting the user for a view parameter value, as Visual FoxPro does when opening a parameterized view or executing SQL code for a parameterized view in the View Designer. However, by listing the view parameters and an appropriate value for each in the “Runtime Variables” editbox, these can be stored with the view definition as the ParameterList property, so that this editbox can be re-populated when the view is re-opened in ViewEditor.

The second page of ViewEditor allows setting of view properties, as shown in Figure 2.

[image: image5.png]
Figure 2
As you can see, all of the expected properties are accessible through this page, in addition to three that are not readily accessible from the VFP View Designer – the Rule Expression, Rule Text and Comments.

Note also that the “Tables” property textbox (labeled “Tables to Update”) is where you can correct the annoying behavior of the CREATE SQL VIEW command to set this property to a list of all tables accessed by the view’s SQL code. ViewEditor will attempt to ensure that the table name (I do not recommend updating more than one table via a single view) is qualified by the <database>! (required for consistent updating behavior) just in case you forget (like I do).

Figure 3 shows the third (field properties) page of ViewEditor, and this is where things get a little more interesting.

[image: image6.png]
Figure 3
This page displays 5 columns, the first of which (the field name) is read-only. The second allows marking fields that are key fields to be used in matching records to be updated, the third those fields that are to be updated, the fourth the all-important UpdateName property, and the fifth the data type of the field.

One of the annoying things about creating views is that sometimes the UpdateName is not fully qualified, so that despite flagging a field as Updatable, the underlying table will not be updated unless the field name is fully qualified, including the database name, exclamation point, table name and field name. Notice that this problem has occurred in the example in figure 3.

The button with the caption “Fix UpdateName Properties” makes it easy to fix this; the underlying code looks for any UpdateName with a period (indicating an alias.fieldname) that lacks the database name and bang character, and corrects this omission. If you have a virtual field in the list, simply make sure that the updateName only shows the table name before clicking the “Fix” button, or edit the UpdateName property after “Fix”ing them. As far as I’ve been able to determine, if a field is not marked as updateable, you can put “FooBar” as the UpdateName property – it seems to be ignored for non-updateable fields.

You can see the effect of the “Fix” button in Figure 4.

[image: image7.png]
Figure 4
Note that when working with a remote view, “fixing” the UpdateName property involves qualifying the table.fieldname with the owner qualifier “dbo.”.

Figure 5 shows the fourth and final ViewEdit page, which gives access to the caption, default value, rule expression and rule text properties of the view fields.

All columns other than the Field column are read/write.

[image: image8.png]
Figure 5
To avoid the tedium of typing in all the captions and default values, the button above the grid on this page will extract the Caption and DefaultValue properties from the underlying table(s), and fills in these values on this page, as shown in Figure 6.

The “Migrate Table Properties” button is not visible when working with a remote view. SQL/Server does not support a caption property, so there is no caption property to migrate from the table to the view. Also, the syntax of a default value expression in SQL/Server may not be compatible with Visual FoxPro.

Because you may need more space than what appears on this page, double-clicking on the Caption, Default Value, Rule and Rule Text column headers will zoom the width of the column to that of all four columns. Double-clicking again will restore the column to it’s normal size.

[image: image9.png]
Figure 6
Once you have finished modifying the view, clicking on the “save” button will commit the changes, after first re-validating the SQL code. In the event that an error is found in the SQL code, an error message with the error number and error text will be displayed.

If editing an existing view, and ViewEditor is unable to actually open the view (often due to modifying the underlying table), it will so inform you but still retrieve the SQL code, so that the view can be reconstructed.

If the view being saved already exists, you will be prompted to overwrite the existing view.

Other Features

Remote View Support

Version 2.0 of ViewEditor supports remote views used to access a Microsoft© SQL/Server or MSDE database. Support for other database servers is not planned at this point, as much of the remote view functionality relies on SQL/Server system stored procedures.

Remote views can be created and modified in almost the same manner as when working with local views.

The only interface elements needed to support remote view support is a checkbox on the form indicating that the view is a remote view, and a text box that indicates the connection name used to access the database server.

The “Remote View” checkbox, and the “Connection Name” textbox are enabled (actually, read/write) when creating a new view, but disabled (read only) if editing an existing remote view. When creating a new remote view you must check the “Remote View” checkbox and provide a valid DSN connection name for the view.

Once a connection name is specified, ViewEditor will attempt to establish a connection to SQL/Server using the specified DSN. This connection name will be used as the connectName property for the view being created.

Building a Field List

When creating a new view, you can click on the “New View” button to clear the properties of any existing view you may have been working with. If you need to include in the field list a long list of fields from a large table, clicking on the [image: image10.png] “Build Field List” button. This will present a list of tables in the database, and making a selection will copy a formatted list of the fields contained therein to the clipboard, as you are informed by a messagebox. (See Figures 7 & 8).

[image: image11.png]
Figure 7
[image: image12.png]
Figure 8
Note that when creating a new remote view, you must first check the “remote view” checkbox and provide a connection name before the “Select Table” dialog will display tables from the remote database.

Previewing the Result Set

After entering SQL code into the SQL window, clicking on the [image: image13.png] preview button, will execute the SQL code, and display the result set in a browse window. Note that you can set values for any view parameters in the “Runtime Variable” editbox to provide a meaningful recordset.

Exporting View Creation Code

Some developers like to maintain all views in program code. Hopefully ViewEditor may make this practice less necessary. However, you can export the code to recreate a view by clicking on the [image: image14.png] “Copy View Code to Clipboard” button. If you select the checkbox next to this button, the code will be wrapped in a FUNCTION…ENDFUNC as shown below in listing 1.

Note that if you’ve made any modifications to the view specifications, you must first save the view before exporting the code. You’re reminded of this by the messagebox shown in Figure 9.

[image: image15.png]
Figure 9
Listing 1 – Exported View Code

FUNCTION vwv_Customer

CREATE SQL VIEW v_Customer AS ;

SELECT * ;

FROM CUSTOMER ;

WHERE CUSTOMER.CUSTOMER_PK = ?VP_CUSTOMERPK

* View Properties

DBSetProp("v_Customer", 'View', 'UpdateType',1)

DBSetProp("v_Customer", 'View', 'WhereType',3)

DBSetProp("v_Customer", 'View', 'FetchMemo',.T.)

DBSetProp("v_Customer", 'View', 'SendUpdates',.T.)

DBSetProp("v_Customer", 'View', 'UseMemoSize',255)

DBSetProp("v_Customer", 'View', 'FetchSize',100)

DBSetProp("v_Customer", 'View', 'MaxRecords',-1)

DBSetProp("v_Customer", 'View', 'Tables',"TESTDATA!CUSTOMER")

DBSetProp("v_Customer", 'View', 'Comment',"")

DBSetProp("v_Customer", 'View', 'BatchUpdateCount',1)

DBSetProp("v_Customer", 'View', 'ShareConnection',.F.)

DBSetProp("v_Customer", 'View', 'Prepared',.F.)

DBSetProp("v_Customer", 'View', 'CompareMemo',.T.)

DBSetProp("v_Customer", 'View', 'FetchAsNeeded',.F.)

DBSetProp("v_Customer", 'View', 'RuleExpression',"")

DBSetProp("v_Customer", 'View', 'RuleText',"")

DBSetProp("v_Customer", 'View', 'ParameterList',"vp_CustomerPK,'N'")

* View Field Properties

DBSetProp("v_Customer.CUSTOMER_PK",'Field','KeyField',.T.)

DBSetProp("v_Customer.CUSTOMER_PK",'Field','Updatable',.T.)

DBSetProp("v_Customer.CUSTOMER_PK",'Field','UpdateName',"TESTDATA!customer.customer_pk")

DBSetProp("v_Customer.CUSTOMER_PK",'Field','DataType',"I")

DBSetProp("v_Customer.CUSTOMER_PK",'Field','Caption',"Primary Key")

DBSetProp("v_Customer.CUSTOMER_PK",'Field','DefaultValue',"genkey("customer")")

DBSetProp("v_Customer.CUSTOMER_PK",'Field','RuleExpression',"")

DBSetProp("v_Customer.CUSTOMER_PK",'Field','RuleText',"")

DBSetProp("v_Customer.CCUSTID",'Field','KeyField',.F.)

DBSetProp("v_Customer.CCUSTID",'Field','Updatable',.T.)

DBSetProp("v_Customer.CCUSTID",'Field','UpdateName',"TESTDATA!customer.ccustid")

DBSetProp("v_Customer.CCUSTID",'Field','DataType',"C(6)")

DBSetProp("v_Customer.CCUSTID",'Field','Caption',"Customer ID")

DBSetProp("v_Customer.CCUSTID",'Field','DefaultValue',"")

DBSetProp("v_Customer.CCUSTID",'Field','RuleExpression',"")

DBSetProp("v_Customer.CCUSTID",'Field','RuleText',"")

DBSetProp("v_Customer.CCOMPANY",'Field','KeyField',.F.)

DBSetProp("v_Customer.CCOMPANY",'Field','Updatable',.T.)

DBSetProp("v_Customer.CCOMPANY",'Field','UpdateName',"TESTDATA!customer.ccompany")

DBSetProp("v_Customer.CCOMPANY",'Field','DataType',"C(40)")

DBSetProp("v_Customer.CCOMPANY",'Field','Caption',"Company Name")

DBSetProp("v_Customer.CCOMPANY",'Field','DefaultValue',"")

DBSetProp("v_Customer.CCOMPANY",'Field','RuleExpression',"")

DBSetProp("v_Customer.CCOMPANY",'Field','RuleText',"")

DBSetProp("v_Customer.CCONTACT",'Field','KeyField',.F.)

DBSetProp("v_Customer.CCONTACT",'Field','Updatable',.T.)

DBSetProp("v_Customer.CCONTACT",'Field','UpdateName',"TESTDATA!customer.ccontact")

DBSetProp("v_Customer.CCONTACT",'Field','DataType',"C(30)")

DBSetProp("v_Customer.CCONTACT",'Field','Caption',"Contact")

DBSetProp("v_Customer.CCONTACT",'Field','DefaultValue',"")

DBSetProp("v_Customer.CCONTACT",'Field','RuleExpression',"")

DBSetProp("v_Customer.CCONTACT",'Field','RuleText',"")

DBSetProp("v_Customer.CTITLE",'Field','KeyField',.F.)

DBSetProp("v_Customer.CTITLE",'Field','Updatable',.T.)

DBSetProp("v_Customer.CTITLE",'Field','UpdateName',"TESTDATA!customer.ctitle")

DBSetProp("v_Customer.CTITLE",'Field','DataType',"C(30)")

DBSetProp("v_Customer.CTITLE",'Field','Caption',"Contact Title")

DBSetProp("v_Customer.CTITLE",'Field','DefaultValue',"")

DBSetProp("v_Customer.CTITLE",'Field','RuleExpression',"")

DBSetProp("v_Customer.CTITLE",'Field','RuleText',"")

DBSetProp("v_Customer.CADDRESS",'Field','KeyField',.F.)

DBSetProp("v_Customer.CADDRESS",'Field','Updatable',.T.)

DBSetProp("v_Customer.CADDRESS",'Field','UpdateName',"TESTDATA!customer.caddress")

DBSetProp("v_Customer.CADDRESS",'Field','DataType',"C(60)")

DBSetProp("v_Customer.CADDRESS",'Field','Caption',"Address")

DBSetProp("v_Customer.CADDRESS",'Field','DefaultValue',"")

DBSetProp("v_Customer.CADDRESS",'Field','RuleExpression',"")

DBSetProp("v_Customer.CADDRESS",'Field','RuleText',"")

DBSetProp("v_Customer.CCITY",'Field','KeyField',.F.)

DBSetProp("v_Customer.CCITY",'Field','Updatable',.T.)

DBSetProp("v_Customer.CCITY",'Field','UpdateName',"TESTDATA!customer.ccity")

DBSetProp("v_Customer.CCITY",'Field','DataType',"C(15)")

DBSetProp("v_Customer.CCITY",'Field','Caption',"City")

DBSetProp("v_Customer.CCITY",'Field','DefaultValue',"")

DBSetProp("v_Customer.CCITY",'Field','RuleExpression',"")

DBSetProp("v_Customer.CCITY",'Field','RuleText',"")

DBSetProp("v_Customer.CREGION",'Field','KeyField',.F.)

DBSetProp("v_Customer.CREGION",'Field','Updatable',.T.)

DBSetProp("v_Customer.CREGION",'Field','UpdateName',"TESTDATA!customer.cregion")

DBSetProp("v_Customer.CREGION",'Field','DataType',"C(15)")

DBSetProp("v_Customer.CREGION",'Field','Caption',"Region")

DBSetProp("v_Customer.CREGION",'Field','DefaultValue',"")

DBSetProp("v_Customer.CREGION",'Field','RuleExpression',"")

DBSetProp("v_Customer.CREGION",'Field','RuleText',"")

DBSetProp("v_Customer.CPOSTALCODE",'Field','KeyField',.F.)

DBSetProp("v_Customer.CPOSTALCODE",'Field','Updatable',.T.)

DBSetProp("v_Customer.CPOSTALCODE",'Field','UpdateName',"TESTDATA!customer.cpostalcode")

DBSetProp("v_Customer.CPOSTALCODE",'Field','DataType',"C(10)")

DBSetProp("v_Customer.CPOSTALCODE",'Field','Caption',"Postal Code")

DBSetProp("v_Customer.CPOSTALCODE",'Field','DefaultValue',"")

DBSetProp("v_Customer.CPOSTALCODE",'Field','RuleExpression',"")

DBSetProp("v_Customer.CPOSTALCODE",'Field','RuleText',"")

DBSetProp("v_Customer.CCOUNTRY",'Field','KeyField',.F.)

DBSetProp("v_Customer.CCOUNTRY",'Field','Updatable',.T.)

DBSetProp("v_Customer.CCOUNTRY",'Field','UpdateName',"TESTDATA!customer.ccountry")

DBSetProp("v_Customer.CCOUNTRY",'Field','DataType',"C(15)")

DBSetProp("v_Customer.CCOUNTRY",'Field','Caption',"Country")

DBSetProp("v_Customer.CCOUNTRY",'Field','DefaultValue',"")

DBSetProp("v_Customer.CCOUNTRY",'Field','RuleExpression',"")

DBSetProp("v_Customer.CCOUNTRY",'Field','RuleText',"")

DBSetProp("v_Customer.CPHONE",'Field','KeyField',.F.)

DBSetProp("v_Customer.CPHONE",'Field','Updatable',.T.)

DBSetProp("v_Customer.CPHONE",'Field','UpdateName',"TESTDATA!customer.cphone")

DBSetProp("v_Customer.CPHONE",'Field','DataType',"C(24)")

DBSetProp("v_Customer.CPHONE",'Field','Caption',"Phone")

DBSetProp("v_Customer.CPHONE",'Field','DefaultValue',"")

DBSetProp("v_Customer.CPHONE",'Field','RuleExpression',"")

DBSetProp("v_Customer.CPHONE",'Field','RuleText',"")

DBSetProp("v_Customer.CFAX",'Field','KeyField',.F.)

DBSetProp("v_Customer.CFAX",'Field','Updatable',.T.)

DBSetProp("v_Customer.CFAX",'Field','UpdateName',"TESTDATA!customer.cfax")

DBSetProp("v_Customer.CFAX",'Field','DataType',"C(24)")

DBSetProp("v_Customer.CFAX",'Field','Caption',"Fax")

DBSetProp("v_Customer.CFAX",'Field','DefaultValue',"")

DBSetProp("v_Customer.CFAX",'Field','RuleExpression',"")

DBSetProp("v_Customer.CFAX",'Field','RuleText',"")

DBSetProp("v_Customer.YMAXORDAMT",'Field','KeyField',.F.)

DBSetProp("v_Customer.YMAXORDAMT",'Field','Updatable',.T.)

DBSetProp("v_Customer.YMAXORDAMT",'Field','UpdateName',"TESTDATA!customer.ymaxordamt")

DBSetProp("v_Customer.YMAXORDAMT",'Field','DataType',"Y")

DBSetProp("v_Customer.YMAXORDAMT",'Field','Caption',"Maximum Order Amount")

DBSetProp("v_Customer.YMAXORDAMT",'Field','DefaultValue',"")

DBSetProp("v_Customer.YMAXORDAMT",'Field','RuleExpression',"")

DBSetProp("v_Customer.YMAXORDAMT",'Field','RuleText',"")

DBSetProp("v_Customer.TLASTUPDATE",'Field','KeyField',.F.)

DBSetProp("v_Customer.TLASTUPDATE",'Field','Updatable',.T.)

DBSetProp("v_Customer.TLASTUPDATE",'Field','UpdateName',"TESTDATA!customer.tlastupdate")

DBSetProp("v_Customer.TLASTUPDATE",'Field','DataType',"T")

DBSetProp("v_Customer.TLASTUPDATE",'Field','Caption',"Last Updated")

DBSetProp("v_Customer.TLASTUPDATE",'Field','DefaultValue',"")

DBSetProp("v_Customer.TLASTUPDATE",'Field','RuleExpression',"")

DBSetProp("v_Customer.TLASTUPDATE",'Field','RuleText',"")

ENDFUNC vwv_Customer

Technical Notes

Some of ViewEditor’s operations create temporary views. In the event that ViewEditor crashes during use, these views may not be properly removed from the database. This tool has been in alpha testing for more than two months, and is remarkably stable, so you shouldn’t have too much difficulty with it.

The heart of the tool is a non-visual class. This class, which is capable of retrieving and modifying views may be of value to other tool makers. Let me know if you have any interest in this component.

I’m not sure of my intentions with this tool. While it seems to be worthy of sale, rather than simply being released as freeware, I’m so used to giving this sort of thing away that I’m not sure whether folks would be interested in paying for it’s use.

Finally, some difficulties I’ve had in the final phases of testing have been due to an apparent tightening of the Visual FoxPro 7 compiler. In earlier versions, it’s been possible to use keywords as table names with apparent impunity. However, the TestData database that shipped with versions of VFP up to version 6 (which I’ve modified for my own purposes) gave me a bit of trouble due to the naming (or possibly renaming by me) of the orders table to “order”. I found it possible in VFP 6 to create queries and views against this table, but trying to do so in VFP 7 generated a syntax error, until I changed the name of the table to “_order” or “orders”.

Command-line operation

The view repository database and a specific view in that database can be specified on the command-line when launching ViewEditor:

Do viewedit with <cDatabase>,<cViewName>

Note that there are some caveats for this to work properly

1) If the view repository database isn’t open, you will be prompted for it’s location

2) If the table repository database is different from the view repository database, and this database isn’t open or not in the current path, you will be prompted for its location.

3) If you’ve created the view without specifying the table name in the FROM clause (the table name(s) aren’t qualified with the database name and exclamation point), ViewEditor will be uncertain whether the views and tables reside in the same database and cautions you that you must verify and correct (if necessary) the assumed table repository. Note that local view definitions should always qualify table names with the database and exclamation point, as there is no guarantee during program execution that the database will always be both open and currently selected.

Integration with Other Tools

It may be desirable to integrate ViewEditor with your own development tools. Running ViewEditor from the VFP command window with any logical argument:

DO VIEWEDIT WITH .T. && or .F.

will create a registry entry for the path where ViewEditor is located, and an entry showing the current version.

If ViewEditor is moved or re-installed in a different location, repeating this process will correct the location value in the registry.

[image: image16.png]
Release History

1.0.40

- Initial Beta Release 1/16/01

1.0.41

Second Beta Release 1/25/01

· Enhancement - Added support for multiple DBC's

· Bug Fix: View properties are cleared when changing DBC's

1.0.65

Third Beta Release 02/07/01

· Enhancement - Added tracking of changes to view properties (as with the SQL code change) and offer "File not saved" warnings as appropriate, when opening a new view, closing the form, changing the DBC, starting a new view, copying view code to the clipboard, etc.

· Bug Fix: Changing database activates page 1 and disables all other pages

· Enhancement - Implement command-line parameters to allow opening a view and associated DBC from the command line.

· Enhancement - Implement command-line parameter to "register" ViewEditor, storing it's location and version number to the registry (HKEY_CURRENT_USER\Software\SAWYER\VIEWEDITOR\config), allowing integration with other tools.

2.0.2

Fourth Beta Release 02/15/01

Added support for remote views

2.0.20

Fifth Beta Release 04/12/01

Added optional third startup switch – a logical .T. to indicate that ViewEdit should be run modally

Changed the datasession from “default” to “private”

Both of these changes were to improve compatibility with SDT and VFE

2.0.23

Sixth Beta Release 04/17/01

Removed an unneeded “CLEAR EVENTS” that was shutting down VFE. Also fixed a bug that resulted from VFE apparently doing a SET PROCEDURE without the ADDITIVE keyword. ViewEdit now checks to make sure the procedure file is loaded, and if necessary does a SET PROCEDURE…ADDITIVE prior to calling any procedure in the procedure file.

2.0.25

First “Production” Release 06/22/01

Added the ability to minimize the ViewEditor form

Replaced code (a stored procedure call) that made ViewEditor SQL/Server specific with the VFP SQLTABLES() function, so that (in theory) ViewEditor can work and create remote views against other database servers. Note that this has not been tested against any database servers other than SQL/Server
Added the ability to delete the currently selected view from the database

Fixed a bug that caused a view parameter to persist, even though it was removed both from the SQL code and the "Runtime Variable Values" on the ViewEditor form

Added provision in the SQL Formatter to handle UNION's

Added code to check to make sure that a table referenced in a view is in the table DBC before appending the <database>! to the UpdateName property.

DefaultValue, Rule and RuleExpression properties when exported to code are delimited with brackets "[]" instead of double quotes, so that the developer can include double quotes within the expressions without running into a conflict when running the view creation code.

Improved the handling of the scenario where the developer drops a field from an existing view, which was causing a problem when calling ViewEditor from SDT's database explorer.

2.0.27
If using Stonefield Database Toolkit with the View Editor, and you had SET CLASSLIB set to SFUTILITY.VCX, which has a function of the same name (with the same purpose, but a slightly different calling syntax), VFP would sometimes become confused and attempt to call that class instead. To resolve the problem, I changed the name of the function to DisplayPath() which is the name of the native VFP 7 function that performs this task.
If you have any questions, comments or suggestions, reach me at mailto:ssawyer@stephensawyer.com

